Probabilistic properties of modular addition
Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 1, pp. 109-130
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the applicability of differential cryptanalysis to the operation of addition modulo $2^n$ used in different cryptosystems. We obtain an analytical formula for expected value of entropy $H_n$ of rows of the difference distribution table of the corresponding mapping. Moreover, the moments of $2^{H_n}$ are studied. In particular, asymptotic inequalities describing the behavior of values $\mathbb{E}2^{qH_n}$ (for $q \in \mathbb{N}$) and $\mathbb{D}2^{H_n}$ as $n \to \infty$ are obtained. We also find a simple analytical formula for the number of table rows with the same distribution. It permits to compute efficiently the statistical characteristics of the entropy.
@article{MVK_2021_12_1_a5,
author = {V. V. Vysotskaya},
title = {Probabilistic properties of modular addition},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {109--130},
year = {2021},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a5/}
}
V. V. Vysotskaya. Probabilistic properties of modular addition. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 1, pp. 109-130. http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a5/
[1] Lipmaa H., Moriai S., “Efficient algorithms for computing differential properties of addition”, Fast Software Encryption, Lect. Notes Comput. Sci., 2355, 2002, 336–350 | DOI | Zbl
[2] Vysotskaya V. V., “Some properties of modular addition”, Matematicheskie Voprosy Kriptografii, 10:2 (2019), 75–88 | DOI | MR
[3] Greene D. H., Knuth D. E., Mathematics for the Analysis of Algorithms, 3 ed., Birkhäuser, Basel, 1990, 132 pp. | MR | Zbl
[4] Tyrtyshnikov E., A Brief Introduction to Numerical Analysis, Birkhäuser, Basel, 1997, 202 pp. | MR | Zbl