@article{MVK_2021_12_1_a4,
author = {A. V. Urivskiy},
title = {Random number generators based on permutations can pass the collision test},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {97--108},
year = {2021},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a4/}
}
A. V. Urivskiy. Random number generators based on permutations can pass the collision test. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 1, pp. 97-108. http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a4/
[1] ISO/IEC 18031:2011. Information technology – Security techniques – Random bit generation, International standard
[2] Urivskiy A., Rybkin A., Borodin M., “On some properties of PRNGs based on block ciphers in counter mode”, Electr. Notes Discr. Math., 57 (2017), 211–218 | DOI | Zbl
[3] Urivskiy A., “On unpredictability of PRNGs based on multiple block ciphers”, Proc. XV Int. Symp. Probl. of Redundancy in Inform. and Control Syst., 2016, 162–165
[4] Lucks S., “The sum of PRPs is a secure PRF”, EUROCRYPT 2000, Lect. Notes Comput. Sci., 1807, 2000, 470–484 | DOI | MR | Zbl
[5] Patarin J., “A proof of security in $O(2n)$ for the XOR of two random permutations”, Proc. Inform. Theor. Security — ICITS 2008, Lect. Notes Comput. Sci., 5155, 2008, 232–248 | DOI | MR | Zbl
[6] Urivskiy A., Borodin M., Rybkin A., “Finding distinguishers for pseudorandom number generators based on permutations”, J. Computer Virol. Hack. Techn., 16 (2020), 295–303 | DOI