@article{MVK_2021_12_1_a1,
author = {M. A. Goltvanitsa},
title = {New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative {Hamilton} {\textendash} {Cayley} theorem},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {23--57},
year = {2021},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a1/}
}
TY - JOUR AU - M. A. Goltvanitsa TI - New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem JO - Matematičeskie voprosy kriptografii PY - 2021 SP - 23 EP - 57 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a1/ LA - ru ID - MVK_2021_12_1_a1 ER -
%0 Journal Article %A M. A. Goltvanitsa %T New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem %J Matematičeskie voprosy kriptografii %D 2021 %P 23-57 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a1/ %G ru %F MVK_2021_12_1_a1
M. A. Goltvanitsa. New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 1, pp. 23-57. http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a1/
[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami i modulyami”, Algebra-2, Itogi nauki i tekhniki, Ser. Sovr. matem. i ee pril., 10, 1994, 1–130
[2] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | Zbl
[3] Goltvanitsa M. A., Zaitsev S. N., Nechaev A. A., “Skruchennye lineinye rekurrentnye posledovatelnosti maksimalnogo perioda nad koltsami Galua”, Fundam. i prikl. matem., 17:3 (2011), 5–23 | MR
[4] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyshev V. N., “Lineinye rekurrentnye posledovatelnosti nad abelevoi gruppoi i modulem”, Algebra-15, Itogi nauki i tekhniki, Ser. Covr. matem. i ee pril., 74, 2000, 1–30
[5] Chen E., Tseng D., “The splitting subspace conjecture”, Finite Fields Appl., 24 (2013), 15–28 | DOI | MR | Zbl
[6] Zeng G., Yang Y., Han W., Fan S., “Word oriented cascade jump $\sigma$-LFSR”, Lect. Notes Comput. Sci., 5527, 2009, 127–136 | DOI | MR | Zbl
[7] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew LRS of maximal period over Galois rings”, Matematicheskie voprosy kriptografii, 4:2 (2013), 59–72 | MR
[8] Goltvanitsa M. A., “Digit sequences of skew linear recurrences of maximal period over Galois rings”, Matematicheskie voprosy kriptografii, 6:2 (2015), 19–27 | MR
[9] Goltvanitsa M. A., “The first digit sequence of skew linear recurrence of maximal period over Galois ring”, Matematicheskie voprosy kriptografii, 7:3 (2016), 5–18 | MR
[10] Goltvanitsa M. A., “Equidistant filters based on skew ML-sequences over fields”, Matematicheskie voprosy kriptografii, 9:2 (2018), 71–86 | MR
[11] Niederreiter H., “The multiple-recursive matrix method for pseudorandom number generation”, Finite Fiields Appl., 1 (1995), 3–30 | DOI | MR | Zbl
[12] Tsaban B., Vishne U., “Efficient linear feedback shift registers with maximal period”, Finite Fiields Appl., 8:2 (2002), 256–267 | DOI | MR | Zbl
[13] Zeng G., Han W., He K., Word-oriented feedback shift register: $\sigma$-LFSR, Cryptology ePrint Archive: Report 2007/114, http://eprint.iacr.org/2007/114
[14] Zeng G., He K.C., Han W., “A trinomial type of $\sigma $-LFSR oriented toward software implementation”, Science in China, Ser. F, Inf. Sci., 50:3 (2007), 359–372 | MR | Zbl
[15] Ghorpade S. R., Hasan S. U., Kumari M., “Primitive polynomials, Singer cycles, and word-oriented linear feedback shift registers”, Des. Codes Cryptogr., 58:2 (2011), 123–134 | DOI | MR | Zbl
[16] Ghorpade S. R., Ram S., “Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields”, Finite Fields Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl
[17] Hasan S., Panario D., Wang Q., “Word-oriented transformation shift registers and their linear complexity”, Lect. Notes Comput. Sci., 7280, 2012, 190–201 | DOI | MR | Zbl
[18] Cohen S., Hasan S., Panario D., Wang Q., “An asymptotic formula for the number of irreducible transformation shift registers”, Linear Algebra Appl., 484 (2015), 46–62 | DOI | MR | Zbl
[19] Zaitcev S. N., “Description of maximal skew linear recurrences in terms of multipliers”, Matematicheskie voprosy kriptografii, 5:2 (2014), 57–70
[20] Zaitsev S. N., “Treugolnyi klass skruchennykh mnogochlenov maksimalnogo perioda”, Problemy peredachi informatsii, 52:4 (2016), 84–93 | MR
[21] Bishoi S., Haran H., Hasan S., “A note on the multiple-recursive matrix method for generating pseudorandom vectors”, Discr. Appl. Math., 222 (2017), 67–75 | DOI | MR | Zbl
[22] Goltvanitsa M. A., “A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors”, Matematicheskie voprosy kriptografii, 5:2 (2014), 37–46
[23] Goltvanitsa M. A., “Ob odnom klasse skruchennykh lineinykh rekurrent maksimalnogo perioda nad koltsom Galua”, Cistemy vysokoi dostupnosti, 11:3 (2015), 28–49
[24] Hassan S., Panario D., Wang Q., “Nonlinear vectorial primitive recursive sequences”, Cryptogr. Commun., 10:6 (2018), 1075–1090 | DOI | MR
[25] Goltvanitsa\;M.A., “Non-commutative Hamilton – Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings”, Matematicheskie voprosy kriptografii, 8:2 (2017), 65–76 | MR
[26] Goltvanitsa M. A., “Metody postroeniya skruchennykh lineinykh rekurrentnykh posledovatelnostei maksimalnogo perioda, baziruyuschiesya na faktorizatsii mnogochlenov Galua v koltse matrichnykh mnogochlenov”, Matematicheskie voprosy kriptografii, 10:4 (2019), 25–51
[27] McDonald B. R., Finite Rings with Identity, Markel Dekker, N. Y., 1974, 429 pp. | MR | Zbl
[28] Nechaev A. A., “Finite Rings with Applications”, Handbook of Algebra, 5, Elsevier B. V., 2008, 213–320 | DOI | MR | Zbl
[29] Sison V., Bases of the Galois ring $\mathrm{GR}(p^r, m)$ over the integer ring $\mathbb{Z}_{p^r}$, arXiv: 1410.0289v1
[30] Kurakin V. L., “Pervaya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua”, Diskretnaya matematika, 6:2 (1994), 88–100 | Zbl
[31] Lam T. Y., A First Course in Noncommutative Rings, Springer-Verlag, N. Y., 1991, 398 pp. | MR | Zbl
[32] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, M., 2003, 414 pp.
[33] Leng S., Algebra, Mir, M., 1968, 564 pp.
[34] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Mat. sb., 184:3 (1993), 21–56 | Zbl
[35] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 830 pp. | MR
[36] Suprunenko D. A., Tyshkevich R. I., Perestanovochnye matritsy, Nauka i tekhnika, Minsk, 1966, 104 pp. | MR