@article{MVK_2020_11_3_a7,
author = {D. B. Fomin},
title = {Construction of permutations on the space $V_{2m}$ by means of $(2m,m)$-functions},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {121--138},
year = {2020},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a7/}
}
D. B. Fomin. Construction of permutations on the space $V_{2m}$ by means of $(2m,m)$-functions. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 121-138. http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a7/
[1] Yu Y., Wang M., Li Y., Constructing differential 4-uniform permutations from know ones, IACR Cryptology ePrint Archive, 2011:047, , 2011 http://eprint.iacr.org/2011/047
[2] Fu S., Feng X., Wu B., Differentially 4-uniform permutations with the best known nonlinearity from Butterflies, IACR Cryptology ePrint Archive, 2017:449, , 2017 http://eprint.iacr.org/2017/449
[3] de la Cruz Jiménez R.A., On some methods for constructing almost optimal S-Boxes and their resilience against side-channel attacks, IACR Cryptology ePrint Archive, 2018:618, , 2018 https://eprint.iacr.org/2018/618
[4] Peng J., Tan C., “New differentially 4-uniform permutations by modifying the inverse function on subfields”, Cryptography and Communications, 9:3 (2017), 363–378 | DOI | MR | Zbl
[5] Fomin D. B., “New classes of $8$-bit permutations based on a butterfly structure”, Matematicheskie voprosy kriptografii, 10:2 (2019), 169–180 | MR
[6] Canteaut A., Duval S., Leurent G., Construction of lightweight s-boxes using Feistel and MISTY structures (full version), IACR Cryptology ePrint Archive, 2015:711, , 2015 http://eprint.iacr.org/2015/711 | MR
[7] Lim C.-H., CRYPTON: A new 128-bit block cipher — specification and analysis, , 1998 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5771&rep=rep1&type=pdf
[8] Gérard B., Grosso V., Naya-Plasencia M., Standaert F.-X., Block ciphers that are easier to mask: How far can we go?, Lect. Notes Comput. Sci., 8086, 2013, 383–399 | DOI
[9] Matsui M., “New block encryption algorithm MISTY”, Lect. Notes Comput. Sci., 1267, 1997, 54–68 | DOI | Zbl
[10] Grosso V., Leurent G., Standaert F.-X., Varici K., “Ls-designs: Bitslice encryption for efficient masked software implementations”, Lect. Notes Comput. Sci., 8540, 2014, 18–37 | DOI
[11] Standaert F.-X., Piret G., Rouvroy G., Quisquater J.-J., Legat J.-D., “ICEBERG: An involutional cipher efficient for block encryption in reconfigurable hardware”, Lect. Notes Comput. Sci., 3017, 2004, 279–299 | DOI | Zbl
[12] Rijmen V., Barreto P., The KHAZAD block cipher, NESSIE Proposal, 2000 | Zbl
[13] Lim C.H., “A revised version of Crypton — Crypton v1.0”, Lect. Notes Comput. Sci., 1636, 1999, 31–45 | DOI | Zbl
[14] Stallings W., “The Whirlpool secure hash function”, Cryptologia, 30:1 (2006), 55–67 | DOI | Zbl
[15] Biryukov A., Perrin L., Udovenko A., “Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1”, Lect. Notes Comput. Sci., 9665, 2016, 372–402 | DOI | MR | Zbl
[16] Perrin L., Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms, Doctoral thesis, Univ. Luxembourg, 2017 http://hdl.handle.net/10993/31195
[17] Perrin L., Udovenko A., Biryukov A., “Cryptanalysis of a Theorem: decomposing the only known solution to the Big APN Problem”, Lect. Notes Comput. Sci., 9815, 2016, 93–122 | DOI | MR | Zbl
[18] Dobbertin H., “Construction of bent functions and balanced boolean functions with high nonlinearity”, Lect. Notes Comput. Sci., 1008, 1994, 61–74 | DOI
[19] Carlet C., Crama Y., Hammer P.L., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Cambridge Univ. Press, 2010, 398–470 | MR
[20] Mesnager S., Bent Functions. Fundamentals and Results, Springer, 2016, 544 pp. | MR | Zbl