Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 79-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of solution of surely solvable systems of Boolean equations with twice bijunctive functions, random independent sets of unknowns in all equations and corrupted right-hand sides. Estimates of the main parameters of the procedure of solution searching for such systems by means of maximum likelihood method are obtained.
@article{MVK_2020_11_3_a5,
     author = {A. V. Tarasov},
     title = {Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {79--100},
     year = {2020},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a5/}
}
TY  - JOUR
AU  - A. V. Tarasov
TI  - Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 79
EP  - 100
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a5/
LA  - ru
ID  - MVK_2020_11_3_a5
ER  - 
%0 Journal Article
%A A. V. Tarasov
%T Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides
%J Matematičeskie voprosy kriptografii
%D 2020
%P 79-100
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a5/
%G ru
%F MVK_2020_11_3_a5
A. V. Tarasov. Parameters of the maximum likelihood method applied to the solution of systems of twice bijunctive equations with corrupted right-hand sides. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 79-100. http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a5/

[1] Schaefer T., “Complexity of satisfiability problems”, Proc. 10 Annu. ACM Symp. Theory Comput. Mach., 1978, 216–226 | MR | Zbl

[2] Gorshkov S.P., “Primenenie teorii NP-polnykh zadach dlya otsenki slozhnosti resheniya sistem bulevykh uravnenii”, Obozr. prikl. i promyshl. matem., 2:3 (1995), 325–398

[3] Gorshkov S.P., Tarasov A.V., Slozhnost resheniya sistem bulevykh uravnenii, Kurs, M., 2017, 192 pp.

[4] Tarasov A.V., “O svoistvakh funktsii, predstavimykh v vide 2-KNF”, Diskretnaya matematika, 13:4 (2001), 99–115 | Zbl

[5] Tarasov A.V., “Nekotorye svoistva grupp inertsii bulevykh biyunktivnykh funktsii i induktivnyi metod generatsii takikh funktsii”, Diskretnaya matematika, 14:2 (2002), 34–47

[6] Balakin G.V., “Grafy dvuchlennykh sistem uravnenii s bulevymi neizvestnymi”, Teoriya veroyatn. i ee primen., 40:2 (1995), 241–259 | MR

[7] Balakin G.V., Nikolskii Yu.B., “Posledovatelnoe primenenie metoda maksimuma pravdopodobiya k resheniyu sistem uravnenii s meshayuschimi parametrami”, Obozr. prikl. i promyshl. matem., 2:3 (1995), 468–476

[8] Balakin G.V., “Vvedenie v teoriyu sluchainykh sistem uravnenii”, Trudy po diskretnoi matematike, 1, 1997, 1–18 | MR | Zbl

[9] Balakin G.V., “Sistemy sluchainykh bulevykh uravnenii so sluchainym vyborom neizvestnykh v kazhdom uravnenii”, Trudy po diskretnoi matematike, 3, 2000, 21–28