Estimates of the number of integers with the special prime factorization. II
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 53-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest computational methods for values of some generalizations of the well-known Dickman function. These generalizations may be used to estimate the number of integers in a long interval having prime factorization satisfying specific conditions. The methods are based on previously obtained by the author integral formulas generalizing results from papers by R. Lambert and W. H. Ekkelkamp.
@article{MVK_2020_11_3_a4,
     author = {A. S. Rybakov},
     title = {Estimates of the number of integers with the special prime {factorization.~II}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {53--78},
     year = {2020},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a4/}
}
TY  - JOUR
AU  - A. S. Rybakov
TI  - Estimates of the number of integers with the special prime factorization. II
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 53
EP  - 78
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a4/
LA  - ru
ID  - MVK_2020_11_3_a4
ER  - 
%0 Journal Article
%A A. S. Rybakov
%T Estimates of the number of integers with the special prime factorization. II
%J Matematičeskie voprosy kriptografii
%D 2020
%P 53-78
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a4/
%G ru
%F MVK_2020_11_3_a4
A. S. Rybakov. Estimates of the number of integers with the special prime factorization. II. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 53-78. http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a4/

[1] Bakhvalov N.S., Chislennye metody, v. I, Nauka, M., 1973, 631 pp. | MR

[2] Korobov N.M., Teoretiko-chislovye metody v priblizhennom analize, Izd. MTsNMO, M., 2004, 285 pp.

[3] Rybakov A.S., “Modifikatsiya algoritma otsenki kolichestva tselykh chisel intervala, imeyuschikh ne bolee trekh bolshikh prostykh delitelei”, Matematicheskie voprosy kriptografii, 4:3 (2013), 131–158

[4] Rybakov A.S., “Otsenki kolichestva chisel so spetsialnym razlozheniem na prostye mnozhiteli”, Matematicheskie voprosy kriptografii, 7:1 (2016), 119–142 | MR

[5] Aoki K., Bos J.W., Franke J., Gaudry P., Kleinjung T., Kruppa A., Lenstra A.K., Montgomery P.L., Osvik D.A., te Riele H., Thome E., Timofeev A., Zimmermann P., Factorization of a 768-bit RSA modulus, web page, , 2010 http://www.loria.fr/z̃immerma/records/rsa768 | MR

[6] Bach E., Peralta R., “Asymptotic semismoothness probabilities”, Math. Comput., 65 (1996), 1701–1715 | DOI | MR | Zbl

[7] Ekkelkamp W.H., On the amount of sieving in factorization methods, Ph.D. Thesis, Univ. Leiden, 2010, 106 pp.

[8] Knuth D.E., Pardo L.T., “Analysis of a simple factorization algorithm”, Theor. Comput. Sci., 3 (1976), 321–348 | DOI | MR

[9] Lambert R., Computational aspects of discrete logarithms, Ph.D. Thesis, Univ. Waterloo, 1996, 113 pp. | Zbl

[10] Lenstra A.K., Lenstra H.W., Jr., The development of the number field sieve, Lect. Notes Math., 1554, 1993, 131 pp. | DOI | MR | Zbl