On the rank of random matrix over prime field consisting of independent rows with given numbers of nonzero elements
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 41-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a recent paper we had proposed explicit bound for the distribution function of the rank of matrix with independent rows having fixed weights. Here this bound is generalized for a wider class of binary matrices with independent rows and also to matrices over prime field ${GF}(p)$ that consist of independent rows, which are chosen from sets of vectors with given numbers of non-zero elements.
@article{MVK_2020_11_3_a3,
     author = {V. I. Kruglov and V. G. Mikhailov},
     title = {On the rank of random matrix over prime field consisting of independent rows with given numbers of nonzero elements},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {41--52},
     year = {2020},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a3/}
}
TY  - JOUR
AU  - V. I. Kruglov
AU  - V. G. Mikhailov
TI  - On the rank of random matrix over prime field consisting of independent rows with given numbers of nonzero elements
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 41
EP  - 52
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a3/
LA  - ru
ID  - MVK_2020_11_3_a3
ER  - 
%0 Journal Article
%A V. I. Kruglov
%A V. G. Mikhailov
%T On the rank of random matrix over prime field consisting of independent rows with given numbers of nonzero elements
%J Matematičeskie voprosy kriptografii
%D 2020
%P 41-52
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a3/
%G ru
%F MVK_2020_11_3_a3
V. I. Kruglov; V. G. Mikhailov. On the rank of random matrix over prime field consisting of independent rows with given numbers of nonzero elements. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 41-52. http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a3/

[1] Zubkov A. M., Kruglov V. I., “Momentnye kharakteristiki vesov vektorov v sluchainykh dvoichnykh lineinykh kodakh”, Matematicheskie voprosy kriptografii, 3:4 (2012), 55–70

[2] Zubkov A. M., Kruglov V. I., “Statisticheskie kharakteristiki vesovykh spektrov sluchainykh lineinykh kodov nad ${\rm GF}(p)$”, Matematicheskie voprosy kriptografii, 5:1 (2014), 27–38

[3] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Mnogochleny Kravchuka i ikh primeneniya v zadachakh kriptografii i teorii kodirovaniya”, Matematicheskie voprosy kriptografii, 6:1 (2015), 33–56

[4] Koblits N., Kurs teorii chisel i kriptografii, Nauchnoe izd-vo TVP, M., 2001

[5] Kovalenko I. N., Levitskaya A. A., Savchuk M. N., Izbrannye zadachi veroyatnostnoi kombinatoriki, Naukova dumka, Kiev, 1986

[6] Kruglov V. I., Mikhailov V. G., “O range sluchainoi dvoichnoi matritsy s zadannymi vesami nezavisimykh strok”, Matematicheskie voprosy kriptografii, 10:4 (2019), 67–76

[7] Lidl R., Niderraiter G., Konechnye polya, v. 2, Mir, M., 1988

[8] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984

[10] Krasikov I., “Nonnegative quadratic forms and bounds on orthogonal polynomials”, J. Approx. Theory, 111:1 (2001), 31–49 | DOI | MR | Zbl

[11] Salmond D., Grant A., Grivell I., Chan T., On the rank of random matrices over finite fields, 2016, arXiv: 1404.3250v2

[12] Zubkov A. M., Kruglov V. I., “On quantiles of minimal codeword weights of random linear codes over $F_p$”, Matematicheskie voprosy kriptografii, 9:2 (2018), 99–102 | MR