Application of non-associative structures for construction of homomorphic cryptosystems
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Homomorphic encoding allows to perform certain mathematical operations with the encoded text and to get the encoded outcome that corresponds to the result of operations processed with a plaintext. There exist both fully homomorphic and partially homomorphic options (with respect to one or more operations). For practical use of such an encoding it is necessary to have a homomorphism with respect for at least one operation. Using non-associative operations, we construct in this paper an example of a cryptosystem based on the El-Gamal system that is homomorphic with respect to two on-going operations: a group and a quasigroup ones.
@article{MVK_2020_11_3_a2,
     author = {S. Yu. Katyshev and A. V. Zyazin and A. V. Baryshnikov},
     title = {Application of non-associative structures for construction of homomorphic cryptosystems},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {31--39},
     year = {2020},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Katyshev
AU  - A. V. Zyazin
AU  - A. V. Baryshnikov
TI  - Application of non-associative structures for construction of homomorphic cryptosystems
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 31
EP  - 39
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a2/
LA  - en
ID  - MVK_2020_11_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Katyshev
%A A. V. Zyazin
%A A. V. Baryshnikov
%T Application of non-associative structures for construction of homomorphic cryptosystems
%J Matematičeskie voprosy kriptografii
%D 2020
%P 31-39
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a2/
%G en
%F MVK_2020_11_3_a2
S. Yu. Katyshev; A. V. Zyazin; A. V. Baryshnikov. Application of non-associative structures for construction of homomorphic cryptosystems. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a2/

[1] Belyavskaya G. B., Tabarov A. Kh., “Identities with permutations leading to linearity of quasigroups”, Discrete Math. Appl., 19:2 (2009), 173–190 | DOI | MR | Zbl

[2] Babenko L. K., Byrtika F.B., Makarevitch O.B., Trapacheva A.V., “A fully homomorphic encoding (review)”, Problems of information security, 3 (2016), 3–25 (in Russian) | Zbl

[3] Baryshnikov A.V., Katyshev S.Yu., “Key agreement schemes based on linear groupoids”, Matematicheskie Voprosy Kriptografii, 8:1 (2017), 7–12 | DOI | MR

[4] Baryshnikov A.V., Katyshev S.Yu., “Application of non-associative structures for the construction of public key distribution algorithms”, Matematicheskie Voprosy Kriptografii, 9:4 (2018), 5–30 (in Russian) | DOI | MR

[5] Boneh D., Goh E.-J., Nissim K., “Evaluating 2-DNF formulas on ciphertexts”, Theory of Cryptography, TCC'05, Lect. Notes Comput. Sci., 3378, 2005, 325–341 | DOI | MR | Zbl

[6] Gentry C., A Fully Homomorphic Encryption Scheme, Ph.D. Thesis, Stanford Univ., 2009 | Zbl

[7] Goldwasser S., Micali S., “Probabilistic encryption”, J. Comput. System Sci., 28:2 (1984), 270–299 | DOI | MR | Zbl

[8] Gribov A.V., “Some homomorphic cryptosystem based on nonassociative structures”, J. Math. Sci., 223:5 (2017), 581–586 | DOI | MR | Zbl

[9] El-Gamal T., “A public-key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inform. Theory, 31 (1985), 469–472 | DOI | MR

[10] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Application of non-associative groupoids to the realization of an open key distribution procedure”, Discrete Math. Appl., 25:1 (2015), 9–24 | DOI | MR | Zbl

[11] Katyshev S. Yu., “Discrete logarithm problem in finite dimensional algebras over field”, Prikladnaya diskretnaya matematika, 26:4 (2014), 21–28 (in Russian) | DOI

[12] Rivest R., Adleman L., Dertouzos M., “On data banks and privacy homomorphisms”, Foundations of Secure Computation, Academic Press, 1978, 169–177 | MR

[13] Varnovsky N. P., Shokurov A.V., “Homomorphic Encryption”, Trudy ISP RAN, 12 (2006), 27–36 (in Russian)