Estimates for the variational distance between two sets of independent random variables
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain explicit lower and upper estimates of the total variation distance between distributions of two sets $(X_1,\ldots,X_n)$ and $(Y_1,\ldots,Y_n)$ of independent random variables which may be nonidentically distributed inside each set. Estimates are formulated in terms of total variation distances $\rho_k$ between distributions of separate components $X_k$ and $Y_k$, $k=1,\ldots,n$. Results for the case of homogeneous samples was considered in this journal in 2018. On the qualitative level the estimates of the present paper correspond with the estimates obtained for the homogeneous cases earlier.
@article{MVK_2020_11_3_a1,
     author = {A. M. Zubkov},
     title = {Estimates for the variational distance between two sets of independent random variables},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {21--29},
     year = {2020},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a1/}
}
TY  - JOUR
AU  - A. M. Zubkov
TI  - Estimates for the variational distance between two sets of independent random variables
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 21
EP  - 29
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a1/
LA  - ru
ID  - MVK_2020_11_3_a1
ER  - 
%0 Journal Article
%A A. M. Zubkov
%T Estimates for the variational distance between two sets of independent random variables
%J Matematičeskie voprosy kriptografii
%D 2020
%P 21-29
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a1/
%G ru
%F MVK_2020_11_3_a1
A. M. Zubkov. Estimates for the variational distance between two sets of independent random variables. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 3, pp. 21-29. http://geodesic.mathdoc.fr/item/MVK_2020_11_3_a1/

[1] Zolotarev V.M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp.

[2] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58:301 (1963), 13–30 | DOI | MR | Zbl

[3] Reyzin L., A note on the statistical difference of small direct products, Techn. Rep. BUCS-TR-2004-032, Boston Univ. Computer Science

[4] Renner R., On the variational distance of independently repeated experiments, arXiv: cs.IT/0509013

[5] Sahai A., Vadhan S., “Manipulating statistical difference”, Randomization Methods in Algorithm Design, DIMACS Workshop (December 1997), DIMACS Ser. in Discr. Math. and Theor. Comput. Sci., 43, Amer. Math. Soc., Providence, R.I., 1999, 251–270 | DOI | MR | Zbl

[6] Sahai A., Vadhan S., “A complete problem for statistical zero knowledge”, J. ACM, 50:2 (2003), 196–249 | DOI | MR | Zbl

[7] Zubkov A. M., “Novye otsenki rasstoyaniya po variatsii mezhdu dvumya raspredeleniyami vyborki”, Matematicheskie voprosy kriptografii, 9:3 (2018), 45–60 | MR