@article{MVK_2020_11_2_a7,
author = {G. B. Marshalko and V. I. Rudskoy},
title = {Key distribution. {Episode} 1: {Quantum} menace},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {99--110},
year = {2020},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_2_a7/}
}
G. B. Marshalko; V. I. Rudskoy. Key distribution. Episode 1: Quantum menace. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 2, pp. 99-110. http://geodesic.mathdoc.fr/item/MVK_2020_11_2_a7/
[1] Stiller B., Khan I., Jain N., Jouguet P., Kunz-Jacques S., Diamanti E., Marquardt Ch., Leuchs G., Quantum hacking of continuous-variable quantum key distribution systems: realtime Trojan-horse attacks, Optical Soc. America Tech. Digest (online), paper FF1A.7, 2015
[2] Biham E., “New types of cryptanalytic attacks using related keys”, J. Cryptology, 7:4 (1994), 229–246 | DOI | MR | Zbl
[3] Wagner D., “A generalized birthday problem”, CRYPTO'02, Lect. Notes Comput. Sci., 2442, 2002, 288–304 | DOI | MR
[4] Rudskoy V., On zero practical significance of «Key recovery attack on full GOST block cipher with zero time and memory», , 2011 http://eprint.iacr.org/2010/111
[5] Pudovkina M.A., Khoruzenko G.I., “Attacks on full block cipher GOST 28147-89 with 2 or 4 related keys”, Prikladnaya Diskretnaya Matematika, 3 (2010), 29–30 (in Russian)
[6] Recommendation for standardization R 1323565.1.022-2018. Information technologies. Cryptograhic data protection. Key derivation functions (In Russian)
[7] Alekseev E., Goncharenko K., Marshalko G., “Provably secure counter mode with related-key-based internal re-keying”, J. Comput. Virol. Hack. Tech., 2020 | DOI
[8] Ishchukova E.A., Krasovsckiy A.V., Polovko I.Yu., “Analysis of the cipher Kuznyechik by the related keys method”, Sovremennye naukoemkie tekhnologii, 5 (2018), 85–90 (in Russian)
[9] Bellare M., “New proofs for NMAC and HMAC: Security without collision resistance”, CRYPTO 2006, Lect. Notes Comput. Sci., 4117, 2006, 602–619 | DOI | MR | Zbl
[10] Qi B., Fung C., Lo H. et al., Time-shift attack in practical quantum cryptosystems, 2005, arXiv: quant-ph/0512080 | MR
[11] Li H., Wang S., Huang J. et al., “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources”, Phys. Rev. A, 84:6 (2011), 062308 | DOI
[12] Weier H., Krauss H., Rau M. et al., “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors”, New J. Physics, 13 (2011), 073024 | DOI
[13] Lydersen L., Skaar J., Makarov V., “Tailored bright illumination attack on distributed-phase-reference protocols”, J. Modern Optics, 58 (2011), 680–685 | DOI
[14] Gilbert G., Hamrick M., Thayer F.J., Privacy amplification in Quantum Key Distribution: Pointwise bound versus average bound, 2001, arXiv: quant-ph/0108013v1
[15] Williamson M., Vedral V., “Eavesdropping on practical quantum cryptography”, J. Modern Optics, 50:13 (2003), 1989–2011 | DOI | MR | Zbl
[16] Bugge A.N., Sauge S., Ghazali A.M.M., Skaar J., Lydersen L., Makarov V., “Laser damage helps the eavesdropper in quantum cryptography”, Phys. Rev. Lett., 112:7 (2014), 070503 | DOI
[17] Recommendation for standardization R 50.1.113-2016. Information technologies. Cryptograhic data protection. Cryptographic algorithms to accompany the usage of digital signature and hash function (In Russian)