Linear and differential cryptanalysis: Another viewpoint
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 2, pp. 83-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Theorems on the exact values of advantages for linear and differential cryptanalysis are proved. The example of universal functional scheme illustrates a wide range of possible errors when the usual methods of estimation the advantages of probabilistic relations are used. It is argued that the probabilistic relations should be constructed for fixed cipher keys separately. The duality between the linear and the differential cryptanalysis is rigorously formulated. The degree of diffusion in linear medium is introduced; it is shown that its maximization should be one of the basic principles of cipher design. This is a quantitative measure of Shannon's qualitative principle that ciphers should realize transforms with high diffusion.
@article{MVK_2020_11_2_a6,
     author = {F. M. Malyshev and A. E. Trishin},
     title = {Linear and differential cryptanalysis: {Another} viewpoint},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {83--98},
     year = {2020},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_2_a6/}
}
TY  - JOUR
AU  - F. M. Malyshev
AU  - A. E. Trishin
TI  - Linear and differential cryptanalysis: Another viewpoint
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 83
EP  - 98
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_2_a6/
LA  - en
ID  - MVK_2020_11_2_a6
ER  - 
%0 Journal Article
%A F. M. Malyshev
%A A. E. Trishin
%T Linear and differential cryptanalysis: Another viewpoint
%J Matematičeskie voprosy kriptografii
%D 2020
%P 83-98
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_2_a6/
%G en
%F MVK_2020_11_2_a6
F. M. Malyshev; A. E. Trishin. Linear and differential cryptanalysis: Another viewpoint. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 2, pp. 83-98. http://geodesic.mathdoc.fr/item/MVK_2020_11_2_a6/

[1] Erokhin A. V., Malyshev F. M., Trishin A. E., “Multidimentional linear method and diffusion characteristics of linear medium of ciphering transform”, Matematicheskie Voprosy Kriptografii, 8:4 (2017), 29–62 | DOI | MR

[2] Malyshev F. M., “The duality of differential and linear methods in cryptography”, Matematicheskie Voprosy Kriptografii, 5:3 (2014), 35–47 | DOI

[3] Massey J. L., “An introduction to contemporary cryptology”, Proc. IEEE, 76:5 (1988), 533–549 | DOI | MR

[4] Malyshev F. M., Trifonov D. I., “Diffusion properties of XSLP-ciphers”, Matematicheskie Voprosy Kriptografii, 7:3 (2016), 47–60 | DOI | MR

[5] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, CRYPTO'90, Lect. Notes Comput. Sci., 537, 1991, 2–21 | DOI | MR | Zbl

[6] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 4:1 (1991), 3–72 | DOI | MR | Zbl

[7] Matsui M., “Linear cryptanalysis method for DES Cipher”, EUROCRYPT'93, Lect. Notes Comput. Sci., 765, 1994, 386–397 | DOI | Zbl

[8] Matsui M., “The first experimental cryptanalysis of the Data Encryption Standard”, CRYPTO'94, Lect. Notes Comput. Sci., 839, 1994, 1–11 | DOI | Zbl

[9] Biham E., “On Matsui's linear cryptanalysis”, EUROCRYPT'94, Lect. Notes Comput. Sci., 950, 1995, 341–355 | DOI | MR | Zbl

[10] Matsui M., “On correlation between the order of S-boxes and the strength of DES”, EUROCRYPT'94, Lect. Notes Comput. Sci., 950, 1995, 366–375 | DOI | MR | Zbl

[11] Nyberg K., “Linear approximation of block ciphers”, EUROCRYPT'94, Lect. Notes Comput. Sci., 950, 1995, 439–444 | DOI | MR | Zbl

[12] Daemen J., Govaerts R., Vandewalle J., “Correlation matrices”, FSE'94, Lect. Notes Comput. Sci., 1008, 1995, 275–285 | DOI | Zbl

[13] Borst J., Preneel B., Vandewalle J., “Linear cryptanalysis of RC5 and RC6”, FSE'99, Lect. Notes Comput. Sci., 1636, 1999, 16–30 | DOI | Zbl

[14] Daemen J., Rijmen V., The Design of Rijndael: AES – The Advanced Encryption Standard, Springer-Verlag, Berlin–Heidelberg, 2002, xvii+238 pp. | MR | Zbl