Linear decomposition of discrete functions in terms of shift-composition operation
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 115-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the shift-composition operation on discrete functions that arise in connection with homomorphisms of shift registers. For an arbitrary function over a finite field all possible representations in the form of shift-compositions of two functions (where the right function is linear) are described. Besides, the possibility to represent an arbitrary function as a shift-composition of three functions such that both left and right functions are linear is studied. It is proved that in the case of a simple field for linear functions and quadratic functions that are linear in the extreme variable the concepts of reducibility and linear reducibility coincide.
@article{MVK_2020_11_1_a6,
     author = {I. V. Cherednik},
     title = {Linear decomposition of discrete functions in terms of shift-composition operation},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {115--143},
     year = {2020},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a6/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Linear decomposition of discrete functions in terms of shift-composition operation
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 115
EP  - 143
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a6/
LA  - ru
ID  - MVK_2020_11_1_a6
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Linear decomposition of discrete functions in terms of shift-composition operation
%J Matematičeskie voprosy kriptografii
%D 2020
%P 115-143
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a6/
%G ru
%F MVK_2020_11_1_a6
I. V. Cherednik. Linear decomposition of discrete functions in terms of shift-composition operation. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 115-143. http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a6/

[1] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10 (2007), 97–122

[2] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 822 pp. | MR

[3] Solodovnikov V. I., “O polugruppe, porozhdennoi avtomatnymi otobrazheniyami obratimogo avtomata”, Trudy po diskretnoi matematike, 4 (2001), 231–242

[4] Solodovnikov V. I., “Gomomorfizmy dvoichnykh registrov sdviga”, Diskretnaya matematika, 17:1 (2005), 73–88 | DOI | MR | Zbl

[5] Solodovnikov V. I., “Gomomorfizmy registrov sdviga v lineinye avtomaty”, Diskretnaya matematika, 20:4 (2008), 87–101 | DOI

[6] Solodovnikov V. I., Registry sdviga i kriptoalgoritmy na ikh osnove, LAP LAMBERT Academic Publishing, 2017, 112 pp.

[7] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2, 22–33