@article{MVK_2020_11_1_a4,
author = {O. A. Kozlitin},
title = {Periodical properties of multidimensional polynomial generator over {Galois} {ring.~II}},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {63--100},
year = {2020},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a4/}
}
O. A. Kozlitin. Periodical properties of multidimensional polynomial generator over Galois ring. II. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 63-100. http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a4/
[1] Anashin V. S., “O gruppakh i koltsakh, obladayuschikh tranzitivnymi polinomami”, XVI Vsesoyuzn. algebr. konf., tezisy, v. II, 1981, 4–5
[2] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, Uchebnoe posobie, 2-e izd., ispr. i dop., Lan, Sankt-Peterburg–Moskva–Krasnodar, 2010, 368 pp.
[3] Viktorenkov V. E., “Orgraf polinomialnogo preobrazovaniya nad kommutativnym lokalnym koltsom”, Obozr. prikl. i promyshl. matem., 7:2 (2000), 327
[4] Viktorenkov V. E., “O stroenii orgrafov polinomialnykh preobrazovanii nad konechnymi kommutativnymi koltsami s edinitsei”, Diskretnaya matematika, 29:3 (2017), 3–23 | DOI
[5] Ermilov D. M., Kozlitin O. A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57 | DOI
[6] Ermilov D. M., Kozlitin O. A., “O stroenii grafa polinomialnogo preobrazovaniya koltsa Galua”, Matematicheskie voprosy kriptografii, 6:3 (2015), 47–73 | DOI | MR
[7] Kozlitin O. A., “Periodicheskie svoistva mnogomernogo polinomialnogo generatora nad koltsom Galua, I”, Matematicheskie voprosy kriptografii, 9:3 (2018), 61–98 | DOI | MR
[8] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | Zbl
[9] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | DOI | Zbl
[10] Parvatov N. G., “On the period length of vector sequences generated by polynomials modulo prime powers”, Prikladnaya diskretnaya matematika, 2016, no. 1(31), 57–61 | MR