The roots of generating functions and sums of integer-valued random variables
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 27-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of roots of generating functions of integer-valued bounded random variables and properties of sums of independent random variables with values in sets $\{0, 1\}$ and $\{0, 1, 2\}$ are studied. Conditions of weak convergence of integer-valued bounded random variables to the Poisson and normal laws in terms of roots of generating functions are presented.
@article{MVK_2020_11_1_a2,
     author = {A. M. Zubkov and G. I. Ivchenko and Yu. I. Medvedev},
     title = {The roots of generating functions and sums of integer-valued random variables},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {27--46},
     year = {2020},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - The roots of generating functions and sums of integer-valued random variables
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 27
EP  - 46
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/
LA  - ru
ID  - MVK_2020_11_1_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T The roots of generating functions and sums of integer-valued random variables
%J Matematičeskie voprosy kriptografii
%D 2020
%P 27-46
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/
%G ru
%F MVK_2020_11_1_a2
A. M. Zubkov; G. I. Ivchenko; Yu. I. Medvedev. The roots of generating functions and sums of integer-valued random variables. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 27-46. http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/

[1] Vatutin V. A., Mikhailov V. G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 27:4, 684–692 | MR | Zbl

[2] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, Ser. Matem., 8:1 (1944), 3–48 | Zbl

[3] Ivanov V. A., Ivchenko G. I., Medvedev Yu. I., “Diskretnye zadachi v teorii veroyatnostei”, Itogi nauki i tekhniki, Ser. Teoriya veroyatn., Matem. statist., Teor. kibern., 22, VINITI, 1984, 3–60

[4] Ivchenko G. I., Medvedev Yu. I., “O sluchainykh podstanovkakh”, Trudy po diskretnoi matematike, 5 (2002), 73–92

[5] Ivchenko G. I., Medvedev Yu. I., Vvedenie v matematicheskuyu statistiku, Izd. LKI, M., 2010, 600 pp. | MR

[6] Ivchenko G. I., Medvedev Yu. I., “Parametricheskie modeli sluchainykh $r$-podstanovok i $r$-razbienii i ikh veroyatnostno-statisticheskii analiz”, Matematicheskie voprosy kriptografii, 9:1 (2018), 47–64 | DOI | MR

[7] Markushevich A. I., Teoriya analiticheskikh funktsii, GITTL, M.-L., 1950, 704 pp. | MR

[8] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, 2-e izd., MTsNMO, M., 2004, 424 pp.

[9] Broder A. Z., “The $r$-Stirling numbers”, Discrete Math., 49:3 (1984), 241–259 | DOI | MR | Zbl

[10] McEliece R., “On the symmetry of good nonlinear codes”, IEEE Trans. Inf. Theory, IT, 16:5 (1970), 609–611 | DOI | MR | Zbl

[11] Harper L., “Stirling behavior is asymptotically normal”, Ann. Math. Stat, 38:2 (1961), 410–414 | DOI | MR

[12] Mezö I., “On the maximum of r-Stirling numbers”, Adv. Appl. Math., 41:3 (2008), 293–306 | DOI | MR | Zbl

[13] Michelen M., Sahasrabudhe J., Central limit theorems from the roots of probability generating functions, 2018, arXiv: 1804.07696v2 | MR

[14] Obrechkoff N., “Sur un problem de Laguerre”, C. R. Acad. Sci., 177 (1923), 102–104

[15] Kortchemski I., “Asymptotic behavior of permutation records”, J. Comb. Theory. Ser. A, 2009, 154–166 | MR