@article{MVK_2020_11_1_a2,
author = {A. M. Zubkov and G. I. Ivchenko and Yu. I. Medvedev},
title = {The roots of generating functions and sums of integer-valued random variables},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {27--46},
year = {2020},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/}
}
TY - JOUR AU - A. M. Zubkov AU - G. I. Ivchenko AU - Yu. I. Medvedev TI - The roots of generating functions and sums of integer-valued random variables JO - Matematičeskie voprosy kriptografii PY - 2020 SP - 27 EP - 46 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/ LA - ru ID - MVK_2020_11_1_a2 ER -
A. M. Zubkov; G. I. Ivchenko; Yu. I. Medvedev. The roots of generating functions and sums of integer-valued random variables. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 27-46. http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a2/
[1] Vatutin V. A., Mikhailov V. G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 27:4, 684–692 | MR | Zbl
[2] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, Ser. Matem., 8:1 (1944), 3–48 | Zbl
[3] Ivanov V. A., Ivchenko G. I., Medvedev Yu. I., “Diskretnye zadachi v teorii veroyatnostei”, Itogi nauki i tekhniki, Ser. Teoriya veroyatn., Matem. statist., Teor. kibern., 22, VINITI, 1984, 3–60
[4] Ivchenko G. I., Medvedev Yu. I., “O sluchainykh podstanovkakh”, Trudy po diskretnoi matematike, 5 (2002), 73–92
[5] Ivchenko G. I., Medvedev Yu. I., Vvedenie v matematicheskuyu statistiku, Izd. LKI, M., 2010, 600 pp. | MR
[6] Ivchenko G. I., Medvedev Yu. I., “Parametricheskie modeli sluchainykh $r$-podstanovok i $r$-razbienii i ikh veroyatnostno-statisticheskii analiz”, Matematicheskie voprosy kriptografii, 9:1 (2018), 47–64 | DOI | MR
[7] Markushevich A. I., Teoriya analiticheskikh funktsii, GITTL, M.-L., 1950, 704 pp. | MR
[8] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, 2-e izd., MTsNMO, M., 2004, 424 pp.
[9] Broder A. Z., “The $r$-Stirling numbers”, Discrete Math., 49:3 (1984), 241–259 | DOI | MR | Zbl
[10] McEliece R., “On the symmetry of good nonlinear codes”, IEEE Trans. Inf. Theory, IT, 16:5 (1970), 609–611 | DOI | MR | Zbl
[11] Harper L., “Stirling behavior is asymptotically normal”, Ann. Math. Stat, 38:2 (1961), 410–414 | DOI | MR
[12] Mezö I., “On the maximum of r-Stirling numbers”, Adv. Appl. Math., 41:3 (2008), 293–306 | DOI | MR | Zbl
[13] Michelen M., Sahasrabudhe J., Central limit theorems from the roots of probability generating functions, 2018, arXiv: 1804.07696v2 | MR
[14] Obrechkoff N., “Sur un problem de Laguerre”, C. R. Acad. Sci., 177 (1923), 102–104
[15] Kortchemski I., “Asymptotic behavior of permutation records”, J. Comb. Theory. Ser. A, 2009, 154–166 | MR