On transversals of splitted Latin squares with identical substitution ${\chi_{ACDB}}$
Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 9-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the splitted homogeneous Latin squares, i.e. Latin squares of order $2n$ with elements from $\left\{0, \ldots, 2n - 1\right\}$ such that reducing modulo $n$ leads to a $\left( 2n \times 2n \right)$-matrix consisting of four Latin squares $\left(A,B,C,D\right)$ of order $n$ with identity $\chi_{ACDB}$ permutation. The method for finding all possible numbers of transversals for Latin Squares of this kind of order $2n$ was described. This method is based on the notion of transversal code introduced in the paper.
@article{MVK_2020_11_1_a1,
     author = {V. V. Borisenko},
     title = {On transversals of splitted {Latin} squares with identical substitution ${\chi_{ACDB}}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {9--26},
     year = {2020},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a1/}
}
TY  - JOUR
AU  - V. V. Borisenko
TI  - On transversals of splitted Latin squares with identical substitution ${\chi_{ACDB}}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2020
SP  - 9
EP  - 26
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a1/
LA  - ru
ID  - MVK_2020_11_1_a1
ER  - 
%0 Journal Article
%A V. V. Borisenko
%T On transversals of splitted Latin squares with identical substitution ${\chi_{ACDB}}$
%J Matematičeskie voprosy kriptografii
%D 2020
%P 9-26
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a1/
%G ru
%F MVK_2020_11_1_a1
V. V. Borisenko. On transversals of splitted Latin squares with identical substitution ${\chi_{ACDB}}$. Matematičeskie voprosy kriptografii, Tome 11 (2020) no. 1, pp. 9-26. http://geodesic.mathdoc.fr/item/MVK_2020_11_1_a1/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004, 421 pp.

[2] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977, 320 pp.

[3] Borisenko V. V., “O transversalyakh raspavshikhsya latinskikh kvadratov chetnogo poryadka”, Matematicheskie voprosy kriptografii, 5:1 (2014), 5–25 | DOI

[4] Borisenko V. V., “O transversalyakh odnorodnykh latinskikh kvadratov”, Matematicheskie voprosy kriptografii, 6:3 (2015), 5–17 | DOI | MR

[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Lan, M., 2015, 608 pp.

[6] Colbourn C. J., Dinitz J. H. (eds.), Handbook of combinatorial designs, 2nd, CRC Press Taylor Francis Group, 2007, 990 pp. | MR | Zbl

[7] Brown J. W., Parker E. T., “More on order 10 turn-squares”, Ars Combinatoria, 35 (1993), 125–127 | MR | Zbl

[8] Wanless I. M., “Transversals in latin squares: a survey”, Surveys in Combinatorics, London Math. Soc. Lect. Note Series, 392, Cambridge Univ. Press, 2011, 403–437 | MR | Zbl