Characterization of mappings by the nonisometricity property
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 4, pp. 77-116
Cet article a éte moissonné depuis la source Math-Net.Ru
For an integer-valued metric $\mu $ on a vector space over $GF(2)$ we introduce a new measure which characterize the non-coordination between $\mu$ and transformation $g$ of the space. It is called a nonisometric index of transformation $g$. In this paper we deal with metrics which are invariant under a translation group of the vector space over $GF(2)$. For different classes of transformations (including involutions and APN permutations) we find the values of nonisometric indices or their extremal estimates.
@article{MVK_2019_10_4_a5,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {Characterization of mappings by the nonisometricity property},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {77--116},
year = {2019},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a5/}
}
B. A. Pogorelov; M. A. Pudovkina. Characterization of mappings by the nonisometricity property. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 4, pp. 77-116. http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a5/