On the rank of random binary matrix with fixed weights of independent rows
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 4, pp. 67-76
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider random matrix consisting of $n$ independent rows such that each row is equiprobably chosen from the set of all $m$-dimensional ($m>n$) binary vectors with given weights $s_i$, $i=1,\ldots,n$, and study asymptotic properties of the rank of such matrix. We propose explicit upper bound for the distribution function of the rank of matrixes.
@article{MVK_2019_10_4_a4,
author = {V. I. Kruglov and V. G. Mikhailov},
title = {On the rank of random binary matrix with fixed weights of independent rows},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {67--76},
year = {2019},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a4/}
}
TY - JOUR AU - V. I. Kruglov AU - V. G. Mikhailov TI - On the rank of random binary matrix with fixed weights of independent rows JO - Matematičeskie voprosy kriptografii PY - 2019 SP - 67 EP - 76 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a4/ LA - ru ID - MVK_2019_10_4_a4 ER -
V. I. Kruglov; V. G. Mikhailov. On the rank of random binary matrix with fixed weights of independent rows. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 4, pp. 67-76. http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a4/