On the existence of non-negative bases in subgroups of free groups of Schreier varieties
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 4, pp. 53-65
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that a subgroup $H$ of a free group $F(X)$ has a non-negative (with respect to $X$) basis if and only if $H$ is generated by the set of all its non-negative (with respect to $X$) elements. A similar result is proved for subgroups of free Abelian groups.
@article{MVK_2019_10_4_a3,
author = {I. A. Kruglov and I. V. Cherednik},
title = {On the existence of non-negative bases in subgroups of free groups of {Schreier} varieties},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {53--65},
year = {2019},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a3/}
}
TY - JOUR AU - I. A. Kruglov AU - I. V. Cherednik TI - On the existence of non-negative bases in subgroups of free groups of Schreier varieties JO - Matematičeskie voprosy kriptografii PY - 2019 SP - 53 EP - 65 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a3/ LA - ru ID - MVK_2019_10_4_a3 ER -
I. A. Kruglov; I. V. Cherednik. On the existence of non-negative bases in subgroups of free groups of Schreier varieties. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 4, pp. 53-65. http://geodesic.mathdoc.fr/item/MVK_2019_10_4_a3/