Functional circuits defining families of permutations of the space $GF(2)^N$
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 3, pp. 81-87
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider families of mappings of Boolean vector spaces which are defined by functional circuits consisting of linear and nonlinear functional elements. Conditions on the structure of connections between circuit elements and on the linear functional elements which guarantee the bijectivity of mappings for any choice of nonlinear functional elements are given.
@article{MVK_2019_10_3_a4,
author = {F. M. Malyshev},
title = {Functional circuits defining families of permutations of~the~space~$GF(2)^N$},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {81--87},
year = {2019},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_3_a4/}
}
F. M. Malyshev. Functional circuits defining families of permutations of the space $GF(2)^N$. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 3, pp. 81-87. http://geodesic.mathdoc.fr/item/MVK_2019_10_3_a4/
[1] Malyshev F. M., “Dvoistvennost raznostnogo i lineinogo metodov v kriptografii”, Matematicheskie voprosy kriptografii, 5:3 (2014), 35–47 | DOI
[2] Shnaier B., Prikladnaya kriptografiya. Protokoly, algoritmy i iskhodnye teksty na yazyke Si, TRIUMF, M., 2002