Cycle structure of random permutations on the set of two-color elements. I
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 3, pp. 9-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Random equiprobable permutations on the set of elements marked by two colors are considered. The cardinality of the set of elements of one color is an arbitrary function of the permutation order. This first part of the paper contains statements on the characteristics of one-color cycles. Results may be used in the study of the cycle structure of polynomial transforms acting on finite rings of some types.
@article{MVK_2019_10_3_a0,
     author = {V. E. Viktorenkov},
     title = {Cycle structure of random permutations on the set of two-color elements. {I}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {9--32},
     year = {2019},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_3_a0/}
}
TY  - JOUR
AU  - V. E. Viktorenkov
TI  - Cycle structure of random permutations on the set of two-color elements. I
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 9
EP  - 32
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_3_a0/
LA  - ru
ID  - MVK_2019_10_3_a0
ER  - 
%0 Journal Article
%A V. E. Viktorenkov
%T Cycle structure of random permutations on the set of two-color elements. I
%J Matematičeskie voprosy kriptografii
%D 2019
%P 9-32
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_3_a0/
%G ru
%F MVK_2019_10_3_a0
V. E. Viktorenkov. Cycle structure of random permutations on the set of two-color elements. I. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 3, pp. 9-32. http://geodesic.mathdoc.fr/item/MVK_2019_10_3_a0/

[1] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978, 288 pp.

[2] Sachkov V. N., “Operator redutsirovaniya. I”, Trudy po diskretnoi matematike, 2 (1998), 282–295 | MR | Zbl

[3] Sachkov V. N., “Operator redutsirovaniya i preobrazovaniya so svoistvami nasledstvennosti, ch. II”, Trudy po diskretnoi matematike, 10 (2007), 269–286

[4] Sachkov V. N., “Sluchainye podstanovki s transformirovannymi tsiklami”, Matematicheskie voprosy kriptografii, 3:4 (2012), 127–150 | DOI | MR

[5] Sachkov V. N., “Sluchainye podstanovki s tsiklami ogranichennoi dliny i transformirovaniem”, Matematicheskie voprosy kriptografii, 5:3 (2014), 117–136 | DOI | MR

[6] Ivchenko G. I., Medvedev Yu. I., “Metod V. L. Goncharova i ego razvitie v analize razlichnykh modelei sluchainykh podstanovok”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 558–566 | DOI | Zbl

[7] Ivchenko G. I., Medvedev Yu. I., “Ob odnom klasse neravnoveroyatnykh podstanovok sluchainoi stepeni”, Trudy po diskretnoi matematike, 7 (2003), 75–88

[8] Ivchenko G. I., Medvedev Yu. I., “Sluchainye nepolnye podstanovki”, Trudy po diskretnoi matematike, 11 (2008), 35–46

[9] Ivchenko G. I., Medvedev Yu. I., Diskretnye raspredeleniya. Veroyatnostno-statisticheskii spravochnik. Mnogomernye raspredeleniya, LENAND, M., 2016, 336 pp.

[10] Viktorenkov V. E., “Orgraf polinomialnogo preobrazovaniya nad kommutativnym lokalnym koltsom”, Obozr. prikl. i promyshl. matem., 7:2 (2000), 327

[11] Viktorenkov V. E., “Ob asimptoticheskoi normalnosti logarifma poryadka sluchainoi polinomialnoi podstanovki nad primarnym koltsom vychetov s ogranichennoi razryadnostyu”, Obozr. prikl. i promyshl. matem., 7:2, 486 | MR

[12] Viktorenkov V. E., “Ob'emy tsiklov sluchainykh polinomialnykh preobrazovanii kolets”, Obozr. prikl. i promyshl. matem., 9:2 (2002), 347–348 | MR

[13] Viktorenkov V. E., “O nekotorykh kharakteristikakh tsiklovoi struktury sluchainykh ravnoveroyatnykh podstanovok s pomechennymi tsiklami i ikh primenenie dlya issledovaniya polinomialnykh preobrazovanii kolets”, Obozr. prikl. i promyshl. matem., 10:3 (2003), 621

[14] Viktorenkov V. E., “O stroenii polinomialnykh preobrazovanii nad konechnymi kommutativnymi koltsami s edinitsei”, Diskretnaya matematika, 29:3 (2017), 3–23 | DOI

[15] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | DOI | Zbl

[16] Ermilov D. M., Kozlitin O. A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57 | DOI

[17] Ermilov D. M., Kozlitin O. A., “O stroenii grafa polinomialnogo preobrazovaniya koltsa Galua”, Matematicheskie voprosy kriptografii, 3:6 (2015), 47–73 | DOI | MR

[18] Kozlitin O. A., “Otsenka dliny maksimalnogo tsikla v grafe polinomialnogo preobrazovaniya koltsa Galua – Eizenshteina”, Diskretnaya matematika, 29:4 (2017), 41–58 | DOI

[19] Vatutin V. A., Mikhailov V. G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 27:4 (1982), 684–692 | MR | Zbl

[20] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 206 pp.

[21] Anashin V. S., “Uniformly distributed sequences in computer algebra or how construct program generators of random numbers”, J. Math. Sci., 8 (1999), 193–208 | MR

[22] Arratia R., Barbour A. D., Tavaré S., “On Poisson-Dirichlet limits for random decomposable combinatorial structures”, Comb., Probab. and Comput., 8 (1999), 193–208 | DOI | MR | Zbl

[23] Hansen J. C., “Order statistics for decomposable combinatorial structures”, Random Structures Algorithms, 5:4 (1994), 517–533 | DOI | MR | Zbl

[24] Shepp L. A., Lloyd S. P., “Ordered cycle lengths in random permutations”, Trans. Amer. Math. Soc., 121:21 (1966), 340–357 | DOI | MR | Zbl