Exact maximum expected differential and linear probability for $2$-round Kuznyechik
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 107-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents the complete description of the best differentials and linear hulls in $2$-round Kuznyechik. We proved that $2$-round maximal expected differential probability equals $2^{-86.66\dots}$ and maximal expected linear probability equals $2^{-76.739\dots}$. A comparison is made with similar results for the AES cipher.
@article{MVK_2019_10_2_a8,
     author = {V. A. Kiryukhin},
     title = {Exact maximum expected differential and linear probability for $2$-round {Kuznyechik}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {107--116},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a8/}
}
TY  - JOUR
AU  - V. A. Kiryukhin
TI  - Exact maximum expected differential and linear probability for $2$-round Kuznyechik
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 107
EP  - 116
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a8/
LA  - en
ID  - MVK_2019_10_2_a8
ER  - 
%0 Journal Article
%A V. A. Kiryukhin
%T Exact maximum expected differential and linear probability for $2$-round Kuznyechik
%J Matematičeskie voprosy kriptografii
%D 2019
%P 107-116
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a8/
%G en
%F MVK_2019_10_2_a8
V. A. Kiryukhin. Exact maximum expected differential and linear probability for $2$-round Kuznyechik. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 107-116. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a8/

[1] L. Keliher, J. Sui, “Exact maximum expected differential and linear probability for two-round advanced encryption standard”, IET Information Security, 1:2 (2007), 53–57 | DOI

[2] E. Biham, “On Matsui's linear cryptanalysis”, EUROCRYPT'95, Lect. Notes Comput. Sci., 950, 1995, 341–355 | DOI | MR | Zbl

[3] GOST R 34.12-2015. Information technology. Cryptographic data security. Block ciphers, Federal Agency on Technical Regulating and Metrology, Russian Federation, 2015

[4] National Institute of Standards and Technology. Advanced Encryption Standard (AES), FIPS PUB 197, 2001

[5] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977 | MR | Zbl

[6] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952 | MR | Zbl

[7] V. Kiryukhin, Exact maximum expected differential and linear probability for 2-round Kuznyechik (Extended Abstract), Report 2018/1085, , Cryptology ePrint Archive http://eprint.iacr.org/2018/1085

[8] V. A. Kiryukhin, “Upper bounds on the MEDP for 2-round LSX-ciphers”, OP Surveys Appl. Industr. Math., 25:4 (2018), 370–371 (in Russian)