@article{MVK_2019_10_2_a7,
author = {S. Karimani and Z. Naghdabadi and T. Eghlidos and M. R. Aref},
title = {An {LWE-based} verifiable threshold secret sharing scheme},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {97--106},
year = {2019},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a7/}
}
TY - JOUR AU - S. Karimani AU - Z. Naghdabadi AU - T. Eghlidos AU - M. R. Aref TI - An LWE-based verifiable threshold secret sharing scheme JO - Matematičeskie voprosy kriptografii PY - 2019 SP - 97 EP - 106 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a7/ LA - en ID - MVK_2019_10_2_a7 ER -
S. Karimani; Z. Naghdabadi; T. Eghlidos; M. R. Aref. An LWE-based verifiable threshold secret sharing scheme. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 97-106. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a7/
[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring”, 35th Annu. Symp. Found. Comput. Sci., 1994, 124–134 | MR
[2] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization”, Int. Workshop on Public Key Cryptography, Lect. Notes Comput. Sci., 6571, 2011, 53–70 | DOI | MR | Zbl
[3] L. Harn, L. Changlu, “Authenticated group key transfer protocol based on secret sharing”, IEEE Trans. Computers, 59 (2010) | DOI | MR | Zbl
[4] Y. Desmedt, Y. Frankel, “Shared generation of authenticators and signatures”, Annu. Int. Cryptology Conf., Lect. Notes Comput. Sci., 576, 1991, 457–469 | DOI
[5] A. Shamir, “How to share a secret”, Commun. ACM, 22 (1979), 612–613 | DOI | MR | Zbl
[6] G. R. Blakley, “Safeguarding cryptographic keys”, AFIPS Nat. Comput. Conf., 48 (1979), 313–317
[7] R. Steinfeld, W. Huaxiong, P. Pieprzyk, “Lattice-based threshold-changeability for standard Shamir secret-sharing schemes”, Int. Conf. Theory Appl. Cryptology and Inf. Security, Lect. Notes Comput. Sci., 3329, 2004, 170–186 | DOI | MR | Zbl
[8] H. Pilaram, T. Eghlidos, “A lattice-based changeable threshold multi-secret sharing scheme and its application to threshold cryptography”, Scientia Iranica, Transaction D, Comput. Sci. and Eng., Electrical, 24 (2017), 1448–1457
[9] M. Stadler, “Publicly verifiable secret sharing”, Int. Conf. Theory Appl. of Cryptogr. Techniques, Lect. Notes Comput. Sci., 1070, 1996, 190–199 | DOI | Zbl
[10] C. Blundo, A. De Santis, G. Di Crescenzo, A. G. Gaggia, U. Vaccaro, “Multi-secret sharing schemes”, 14th Annu. Int. Cryptol. Conf. Adv. Cryptol., Lect. Notes Comput. Sci., 839, 1994, 150–163 | DOI | Zbl
[11] H. Pilaram, T. Eghlidos, “An efficient lattice based multi-stage secret sharing scheme”, IEEE Trans. on Dependable and Secure Comput., 14 (2017), 2–8
[12] D. Bernstein, J. Buchmann, E. Dahmen, Post-quantum cryptography, Springer, 2009, 246 pp. | MR
[13] M. Ajtai, “Generating hard instances of lattice problems (extended abstract)”, Proc. 28th Annu. ACM Symp. Theory of Computing, ACM, 1996, 99–108 | MR | Zbl
[14] O. Goldreich, S. Goldwasser, S. Halevi, Collision-free hashing from lattice problems, Report 1996/9, Cryptology ePrint Archive, 1996 http://eprint.iacr.org/1996/009
[15] A. Georgescu, “A LWE-based secret sharing scheme”, Network Security and Cryptography, 2011, no. 3, 27–29
[16] R. El Bansarkhani, M. Meziani, “An efficient lattice-based secret sharing construction”, 6th Inf. Security Theory Practice: Security, Privacy Trust Comput. Syst. Ambient Intell. Ecosyst., Lect. Notes Comput. Sci., 7322, 2012, 160–168 | DOI
[17] H. Amini Khorasgani, S. Asaad, T. Eghlidos, M. R. Aref, “A lattice-based threshold secret sharing scheme”, 11th Int. ISC Conf. on Inf. Security Cryptology, IEEE, 2014, 173–179
[18] D. Micciancio, S. Goldwasser, Complexity of lattice problems: a cryptographic perspective, The Springer International Series in Engineering and Computer Science, 671, Springer US, 2002 | MR
[19] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography”, J. ACM, 56:6 (2009), 34 | DOI | MR | Zbl
[20] D. Micciancio, C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller”, Annu. Int. Conf. Theory Appl. Cryptogr. Techniques, Lect. Notes Comput. Sci., 7237, 2012, 700–718 | DOI | MR | Zbl