Testing the NIST Statistical Test Suite on artificial pseudorandom sequences
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 89-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the results of experiments with the well-known NIST Statistical Test Suite designed for testing hypothesis on the uniformity and independence of binary sequence elements. In particular, we consider conditions on the parameters of piecewise merging of two linear recurrent sequences under which such combined sequences successfully pass all tests of the NIST package.
@article{MVK_2019_10_2_a6,
     author = {A. M. Zubkov and A. A. Serov},
     title = {Testing the {NIST} {Statistical} {Test} {Suite} on artificial pseudorandom sequences},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {89--96},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a6/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - Testing the NIST Statistical Test Suite on artificial pseudorandom sequences
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 89
EP  - 96
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a6/
LA  - en
ID  - MVK_2019_10_2_a6
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T Testing the NIST Statistical Test Suite on artificial pseudorandom sequences
%J Matematičeskie voprosy kriptografii
%D 2019
%P 89-96
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a6/
%G en
%F MVK_2019_10_2_a6
A. M. Zubkov; A. A. Serov. Testing the NIST Statistical Test Suite on artificial pseudorandom sequences. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 89-96. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a6/

[1] D. Knuth, The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley, 1969, 688 pp. | MR | Zbl

[2] U. Maurer, “A universal statistical test for random bit generators”, J. Cryptology, 5:2 (1992), 89–105 | DOI | MR | Zbl

[3] G. Marsaglia, DIEHARD: a battery of tests of randomness, , 1996 http://stat.fsu.edu/geo/diehard.html

[4] M. Mascagni, A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for pseudorandom number generation”, ACM Trans. Math. Soft., 26 (2000), 436–461 | DOI | MR

[5] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications, NIST Special Publication 800-22, Revision 1a, 27 April 2010

[6] P. L'Ecuyer P., R. Simard, TestU01, Dept. d'Inform. Rech. Oper. Univ. Montreal, 2013, 214 pp. http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf

[7] Universal Mobile Telecommunications System (UMTS); Specification of the 3GPP confidentiality and integrity algorithms; Document 2: Kasumi specification, http://www.etsi.org/website/document/algorithms/ts_135202v070000p.pdf