Data recovery for a neural network-based biometric authentication scheme
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 61-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The project of the standard of neural network biometric containers protection using cryptographic algorithms is analysed. The inconsistency of the suggested combination of password and neural network biometric information protection systems is shown.
@article{MVK_2019_10_2_a4,
     author = {D. S. Bogdanov and V. O. Mironkin},
     title = {Data recovery for a neural network-based biometric authentication scheme},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {61--74},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a4/}
}
TY  - JOUR
AU  - D. S. Bogdanov
AU  - V. O. Mironkin
TI  - Data recovery for a neural network-based biometric authentication scheme
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 61
EP  - 74
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a4/
LA  - en
ID  - MVK_2019_10_2_a4
ER  - 
%0 Journal Article
%A D. S. Bogdanov
%A V. O. Mironkin
%T Data recovery for a neural network-based biometric authentication scheme
%J Matematičeskie voprosy kriptografii
%D 2019
%P 61-74
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a4/
%G en
%F MVK_2019_10_2_a4
D. S. Bogdanov; V. O. Mironkin. Data recovery for a neural network-based biometric authentication scheme. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 61-74. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a4/

[1] X. Boyen, “Reusable fuzzy extractors”, Proc. 11th ACM Conf. Computer and communic. security, CCS'04, 82–91

[2] Y. Dodis, L. Reyzin, A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other noisy data”, Lect. Notes Comput. Sci., 3072, 2004, 523–540 | DOI | MR

[3] GOST R 52633.0-2006. Information protection. Information protection technology. Requirements to the means of high-reliability biometric authentication, Standardinform, M., 2007, 24 pp. (in Russian)

[4] GOST R 52633.5-2011. Information protection. Information protection technology. The neural net biometry-code convertor automatic training, Standardinform, M., 2012, 20 pp. (in Russian)

[5] GOST R 34.11-2012. Information technology. Cryptographic data security. Hash function, Standardinform, M., 2013, 24 pp. (in Russian)

[6] O. V. Efimov, V. A. Funtikov, Y. K. Jazov, “The neuronet converter “biometry-code” structure and interconnections choice strategy”, Neurocomputers: development, application, 2009, no. 6, 14–16 (in Russian)

[7] T. Kevenaar, B. Skoric, P. Tuyls, Security with Noisy Data: On Private Biometrics, Secure Key Storage and Anti-Counterfeiting, Springer Science and Business Media, Heidelberg etc., 2007, 340 pp.

[8] G. B. Marshalko, “On the security of a neural network-based biometric authentication scheme”, Matematicheskie voprosi kriptografii, 5:2 (2014), 87–98 | DOI | MR

[9] G. B. Marshalko, V. O. Mironkin, “Geometric analysis of a neural symmetric cipher”, Information Security Problems. Computer Systems, 2017, no. 1, 43–49 (in Russian)

[10] I. G. Nazarov, O. V. Efimov, Y. K. Yazov, “The package of national standards, ensuring biometric and neural network protection of mass circulated personal data privacy”, Neurocomputers: development, application, 2012, no. 3, 9–17 (in Russian)

[11] V. N. Sachkov, Probabilistic methods in combinatorial analysis, Nauka, M., 1978, 288 pp. (in Russian) | MR

[12] Technical specification (project). Neural network container protection using cryptographic algorithms, 2018, 11 pp. (in Russian) https://tc26.ru/discussions/tekhnicheskaya-spetsifikatsiya-zashchita-neyrosetevykh-biometricheskikh-konteynerov-s-ispolzovaniem-.html