Practical significance of security bounds for standardized internally re-keyed block cipher modes
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 31-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2018 the CTR-ACPKM and OMAC-ACPKM-Master internally rekeyed block cipher modes were adopted in Russian Standardization System and must pass through the last formal standardization stages in IETF. The main distinctive feature of these modes is that during each message processing the key used for data blocks transformation is periodically changed. The security bounds for these modes in the standard IND-CPNA and PRF security models were presented at CTCryptвЂTM18. This paper contains the interpretation of the proposed reductions from the viewpoint of mode resistance to the cryptanalytic methods of various types and the comparative bounds analysis.
@article{MVK_2019_10_2_a2,
     author = {L. R. Ahmetzyanova and E. K. Alekseev and G. K. Sedov and E. S. Smyshlyaeva and S. V. Smyshlyaev},
     title = {Practical significance of security bounds for standardized internally re-keyed block cipher modes},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {31--46},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a2/}
}
TY  - JOUR
AU  - L. R. Ahmetzyanova
AU  - E. K. Alekseev
AU  - G. K. Sedov
AU  - E. S. Smyshlyaeva
AU  - S. V. Smyshlyaev
TI  - Practical significance of security bounds for standardized internally re-keyed block cipher modes
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 31
EP  - 46
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a2/
LA  - en
ID  - MVK_2019_10_2_a2
ER  - 
%0 Journal Article
%A L. R. Ahmetzyanova
%A E. K. Alekseev
%A G. K. Sedov
%A E. S. Smyshlyaeva
%A S. V. Smyshlyaev
%T Practical significance of security bounds for standardized internally re-keyed block cipher modes
%J Matematičeskie voprosy kriptografii
%D 2019
%P 31-46
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a2/
%G en
%F MVK_2019_10_2_a2
L. R. Ahmetzyanova; E. K. Alekseev; G. K. Sedov; E. S. Smyshlyaeva; S. V. Smyshlyaev. Practical significance of security bounds for standardized internally re-keyed block cipher modes. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 31-46. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a2/

[1] Information processing systems. Cryptographic protection. Technical specification for the use of GOST 28147-89 for attachments encryptions in the IPSEC ESP protocol, Technical specification, Federal Agency for Technical Regulation and Metrology (ROSSTANDART), M., 2013 (in Russian)

[2] Information technology. Cryptographic protection of information. Using algorithms GOST 28147-89, GOST R 34.11 and GOST R 34.10 in cryptographic messages of the CMS format, Recommendations for standardization, Federal Agency for Technical Regulation and Metrology (ROSSTANDART), M., 2014 (in Russian)

[3] Information technology. Cryptographic protection of information. Using ciphersuites based on GOST 28147-89 for Transport Layer Security (TLS), Recommendations for standardization, Federal Agency for Technical Regulation and Metrology (ROSSTANDART), M., 2014 (in Russian)

[4] M. Bellare, M. Abdalla, “Increasing the lifetime of a key: A comparative analysis of the security of re-keying techniques”, ASIACRYPT 2000, Lect. Notes Comput. Sci., 1976, 2000, 546–559 | DOI | MR | Zbl

[5] L. Ahmetzyanova, E. Alekseev, I. Oshkin, S. Smyshlyaev, L. Sonina, “On the properties of the CTR encryption mode of the Magma and Kuznyechik block ciphers with re-keying method based on CryptoPro Key Meshing”, Matematicheskie Voprosy Kriptografii, 8:2 (2017), 39–50 | DOI | MR

[6] L. Ahmetzyanova, E. Alekseev, S. Smyshlyaev, Security bound for CTR-ACPKM internally re-keyed encryption mode, Report 2018/950, , IACR ePrint Archive, 2018 http://eprint.iacr.org/2018/950

[7] L. Ahmetzyanova, E. Alekseev, I. Oshkin, S. Smyshlyaev, Increasing the lifetime of symmetric keys for the GCM mode by internal re-keying, Report 2017/697, , IACR ePrint Archive, 2017 http://eprint.iacr.org/2017/697

[8] M. Bellare, D. J. Bernstein, S. Tessaro, Hash-function based PRFs: Amac and its multi-user security, Report 2016/142, , IACR ePrint Archive, 2016 http://eprint.iacr.org/2016/142 | MR

[9] M. Bellare, P. Rogaway, Introduction to modern cryptography, , 2005 http://freetechbooks.com/introduction-to-modern-cryptography-t363.html

[10] M. Bellare, “Practice-oriented provable-security”, EEF School 1998, Lect. Notes Comput. Sci., 1561, 1999, 1–15 | DOI | Zbl

[11] E. Biham, A. Shamir, “Differential cryptanalysis of DES-like cryptosystems”, CRYPTO 1990, Lect. Notes Comput. Sci., 537, 1991, 2–21 | MR | Zbl

[12] D. Chang, M. Nandi, A short proof of the PRP/PRF switching lemma, Report 2008/078, , IACR ePrint Archive, 2008 http://eprint.iacr.org/2008/078

[13] I. Damgård, “A “proof-reading” of some issues in cryptography”, ICALP 2007, Lect. Notes Comput. Sci., 4596, 2007, 2–11 | DOI | Zbl

[14] S. Dziembowski, S. Faust, G. Herold, A. Journault, D. Masny, F. X. Standaert, Towards sound fresh re-keying with hard (physical) learning problems, Report 2016/573, , IACR ePrint Archive, 2016 http://eprint.iacr.org/2016/573 | MR

[15] O. Goldreich, On post-modern cryptography, Report 2006/461, , IACR ePrint Archive, 2006 http://eprint.iacr.org/2006/461 | MR

[16] T. Iwata, K. Kurosawa, “Stronger security bounds for OMAC, TMAC, and XCBC”, INDOCRYPT 2003, Lect. Notes Comput. Sci., 2904, 2003, 402–415 | DOI | MR | Zbl

[17] N. Koblitz, A. J. Menezes, “Another look at “provable security””, J. Cryptology, 20:1 (2007), 3–37 | DOI | MR | Zbl

[18] A. Luykx, B. Mennink, K. G. Paterson, Analyzing multi-key security degradation, Report 2017/435, , IACR ePrint Archive, 2017 http://eprint.iacr.org/2017/435 | MR

[19] M. Matsui, “Linear cryptanalysis method for DES cipher”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 402–415

[20] P. Q. Nguyen, “Cryptanalysis vs. provable security”, Inscrypt 2011, Lect. Notes Comput. Sci., 7537, 2012, 22–23 | DOI | Zbl

[21] C. Ramsay, J. Lohuis, TEMPEST attacks against AES. Covertly stealing keys for 200euro, , 2017 https://www.fox-it.com/nl/wp-content/uploads/sites/12/Tempest_attacks_against_AES.pdf

[22] P. Rogaway, “Nonce-based symmetric encryption”, FSE 2004, Lect. Notes Comput. Sci., 3017, 2004, 348–358 | DOI

[23] S. Smyshlyaev, Re-keying mechanisms for symmetric keys draft-irtf-cfrg-re-keying-13, Internet-Draft (Work in Progress), Internet Engineering Task Force (IETF), January 2018 http://tools.ietf.org/html/draft-irtf-cfrg-re-keying-13