Evaluation of the maximum performance of block encryption algorithms
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 181-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study nonlinear transformations (similar to generalized Feistel networks) based on the shift register of length $n$ with $m$ feedbacks over the set $V_{32}$ of $32$-dimensional binary vectors, $32 \geqslant n > m \geqslant 1$. A new characteristic for evaluating the maximum encryption performance is proposed. These results may be used for justified choice of the parameters for block encryption algorithms.
@article{MVK_2019_10_2_a15,
     author = {V. M. Fomichev and A. M. Koreneva and A. R. Miftakhutdinova and D. I. Zadorozhny},
     title = {Evaluation of the maximum performance of block encryption algorithms},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {181--191},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a15/}
}
TY  - JOUR
AU  - V. M. Fomichev
AU  - A. M. Koreneva
AU  - A. R. Miftakhutdinova
AU  - D. I. Zadorozhny
TI  - Evaluation of the maximum performance of block encryption algorithms
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 181
EP  - 191
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a15/
LA  - en
ID  - MVK_2019_10_2_a15
ER  - 
%0 Journal Article
%A V. M. Fomichev
%A A. M. Koreneva
%A A. R. Miftakhutdinova
%A D. I. Zadorozhny
%T Evaluation of the maximum performance of block encryption algorithms
%J Matematičeskie voprosy kriptografii
%D 2019
%P 181-191
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a15/
%G en
%F MVK_2019_10_2_a15
V. M. Fomichev; A. M. Koreneva; A. R. Miftakhutdinova; D. I. Zadorozhny. Evaluation of the maximum performance of block encryption algorithms. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 181-191. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a15/

[1] V. M. Fomichev, D. A. Melnikov, Cryptographic methods of information security, ed. Fomichev V., URAIT, M., 2016, 454 pp. (in Russian)

[2] V. M. Fomichev, Ya. A. Avezova, A. M. Koreneva, S. N. Kyazhin, “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Industr. Math., 12:3 (2018), 453–469 | DOI | MR | Zbl

[3] T. P. Berger, J. Francq, M. Minier, G. Thomas, “Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput”, IEEE Trans. Computers, 65:7 (2016), 2074–2089 | DOI | MR | Zbl

[4] T. P. Berger, M. Minier, G. Thomas, “Extended generalized Feistel networks using matrix representation”, SAC 2013, Lect. Notes Comput. Sci., 8282, 2014, 289–305 | DOI | MR | Zbl

[5] T. Suzaki, K. Minematsu, “Improving the generalized Feistel”, FSE 2010, Lect. Notes Comput. Sci., 6147, 2010, 19–39 | DOI | Zbl

[6] V. M. Fomichev, “Properties of paths in graphs and multigraphs”, Prikladnaya Diskretnaya Matematika, 7:1 (2010), 118–124 (in Russian)