New classes of $8$-bit permutations based on a butterfly structure
Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 169-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New classes of $8$-bit permutation based on a butterfly structure are introduced. These classes set up a new way for generating $2n$-bit permutation from $n$-bit ones. We introduce some classes that contain permutations with good cryptographic properties and could be efficiently implemented for hardware and software applications.
@article{MVK_2019_10_2_a14,
     author = {D. B. Fomin},
     title = {New classes of $8$-bit permutations based on a butterfly structure},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {169--180},
     year = {2019},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a14/}
}
TY  - JOUR
AU  - D. B. Fomin
TI  - New classes of $8$-bit permutations based on a butterfly structure
JO  - Matematičeskie voprosy kriptografii
PY  - 2019
SP  - 169
EP  - 180
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a14/
LA  - en
ID  - MVK_2019_10_2_a14
ER  - 
%0 Journal Article
%A D. B. Fomin
%T New classes of $8$-bit permutations based on a butterfly structure
%J Matematičeskie voprosy kriptografii
%D 2019
%P 169-180
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a14/
%G en
%F MVK_2019_10_2_a14
D. B. Fomin. New classes of $8$-bit permutations based on a butterfly structure. Matematičeskie voprosy kriptografii, Tome 10 (2019) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/MVK_2019_10_2_a14/

[1] C. Shannon, “Communication theory of secrecy systems”, Bell Syst. Techn. J., 28 (1949), 656–715 | DOI | MR | Zbl

[2] E. Boss, V. Grosso, T. Gëneysu, G. Leander, A. Moradi, T. Schneider, “Strong 8-bit s-boxes with efficient masking in hardware extended version”, J. Cryptogr. Eng., 7:2 (2017), 149–165 | DOI

[3] S. Kutzner, P. Nguyen, A. Poschmann, “Enabling 3-share threshold implementations for all 4-bit s-boxes”, ICISC 2013, Lect. Notes Comput. Sci., 8565, 2013, 91–108 | DOI | MR

[4] A. Biryukov, L. Perrin, A. Udovenko, “Reverse-engineering the s-box of Streebog, Kuznyechik and STRIBOBr1”, EUROCRYPT 2016, Lect. Notes Comput. Sci., 9665, 2016, 372–402 | DOI | MR | Zbl

[5] A. Canteaut, S. Duval, G. Leurent, Construction of lightweight s-boxes using Feistel and MISTY structures (full version), Report 2015/711, , Cryptology ePrint Archive http://eprint.iacr.org/2015/711

[6] C. H. Lim, CRYPTON: A new 128-bit Block Cipher - Specification and Analysis, , 1998 http://citeseerx.ist.psu.edu

[7] B. Gérard, V. Grosso, M. Naya-Plasencia, F. X. Standaert, Block ciphers that are easier to mask: How far can we go?, CHES 2013, Lect. Notes Comput. Sci., 8086, 2013, 383–399 | DOI | Zbl

[8] M. Matsui, “New block encryption algorithm MISTY”, FSE 1997, Lect. Notes Comput. Sci., 1267, 1997, 54–68 | DOI | Zbl

[9] V. Grosso, G. Leurent, F. X. Standaert, K. Varici, “Ls-designs: Bitslice encryption for efficient masked software implementations”, FSE 2014, Lect. Notes Comput. Sci., 8540, 2014, 18–37 | DOI

[10] F. X. Standaert, G. Piret, G. Rouvroy, J. J. Quisquater, J. D. Legat, “ICEBERG: An involutional cipher efficient for block encryption in reconfigurable hardware”, FSE 2004, Lect. Notes Comput. Sci., 3017, 2004, 279–299 | DOI | Zbl

[11] V. Rijmen, P. Barreto, The KHAZAD legacy-level block cipher, Primitive submitted to NESSIE 97, 2000 | Zbl

[12] C. H. Lim, “A revised version of Crypton - Crypton v1.0”, FSE'99, Lect. Notes Comput. Sci., 1636, 1999, 31–45 | DOI | Zbl

[13] W. Stallings, “The Whirlpool secure hash function”, Cryptologia, 30:1 (2006), 55–67 | DOI | Zbl

[14] K. A. Browning, J. F. Dillon, M. T. McQuistan, A. J. Wolfe, “An APN permutation in dimension six”, 9th Int. Conf. Finite Fields Appl. (2009), Contemp. Math., 518, 2010, 33–42 | DOI | MR | Zbl

[15] R. L. McFarland, “A family of difference sets in non-cyclic groups”, J. Comb. Theory, Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[16] H. Dobbertin, “Construction of bent functions and balanced boolean functions with high nonlinearity”, FSE 1994, Lect. Notes Comput. Sci., 1008, 1994, 61–74 | DOI

[17] S. Olariu, A. Y. Zomaya, Handbook of Bioinspired Algorithms and Applications, Chapman and Hall/CRC, Boca Raton, FL, 2005 | MR

[18] R. A. de la Cruz Jiménez, Generation of 8-bit s-boxes having almost optimal cryptographic properties using smaller 4-bit s-boxes and finite field multiplication, www.cs.haifa.ac.il/õrrd/LC17/paper60.pdf