Moments of the weight deficit of a random equiprobable involution acting on a vector space over a field of two elements
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 4, pp. 101-124
Cet article a éte moissonné depuis la source Math-Net.Ru
For the additive group of a vector space of increasing dimension $m$ over a field of two elements we study the moments of a random variable equal to the weight deficit of a random equiprobable involution formed by the product of $2^{m-1}$ independent binary cycles. Exact and asymptotic formulas for the binomial moments and for the variance are obtained.
@article{MVK_2018_9_4_a5,
author = {V. N. Sachkov and I. A. Kruglov},
title = {Moments of the weight deficit of a random equiprobable involution acting on a vector space over a field of two elements},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {101--124},
year = {2018},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_4_a5/}
}
TY - JOUR AU - V. N. Sachkov AU - I. A. Kruglov TI - Moments of the weight deficit of a random equiprobable involution acting on a vector space over a field of two elements JO - Matematičeskie voprosy kriptografii PY - 2018 SP - 101 EP - 124 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/MVK_2018_9_4_a5/ LA - ru ID - MVK_2018_9_4_a5 ER -
%0 Journal Article %A V. N. Sachkov %A I. A. Kruglov %T Moments of the weight deficit of a random equiprobable involution acting on a vector space over a field of two elements %J Matematičeskie voprosy kriptografii %D 2018 %P 101-124 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/MVK_2018_9_4_a5/ %G ru %F MVK_2018_9_4_a5
V. N. Sachkov; I. A. Kruglov. Moments of the weight deficit of a random equiprobable involution acting on a vector space over a field of two elements. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 4, pp. 101-124. http://geodesic.mathdoc.fr/item/MVK_2018_9_4_a5/
[1] Sachkov V. N., “Kombinatornye svoistva differentsialno 2-ravnomernykh podstanovok”, Matematicheskie voprosy kriptografii, 6:1 (2015), 159–179 | DOI
[2] Sachkov V. N., Kruglov I. A., “Vesovye defitsity involyutsii i podstanovok”, Matematicheskie voprosy kriptografii, 7:4 (2016), 95–116 | DOI
[3] Sachkov V. N., “Involyutsii s dannym vesovym defitsitom, sootvetstvuyuschie tablitse Keli konechnoi abelevoi gruppy”, Matematicheskie voprosy kriptografii, 8:4 (2017), 117–134 | DOI
[4] Sachkov V. N., Kurs kombinatornogo analiza, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2013, 336 pp.