@article{MVK_2018_9_3_a5,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}${-Markovian} property},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {109--126},
year = {2018},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a5/}
}
TY - JOUR
AU - B. A. Pogorelov
AU - M. A. Pudovkina
TI - Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}$-Markovian property
JO - Matematičeskie voprosy kriptografii
PY - 2018
SP - 109
EP - 126
VL - 9
IS - 3
UR - http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a5/
LA - ru
ID - MVK_2018_9_3_a5
ER -
B. A. Pogorelov; M. A. Pudovkina. Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}$-Markovian property. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 109-126. http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a5/
[1] Lai X., Massey J. L., Murphy S., “Markov ciphers and differential cryptanalysis”, EUROCRYPT'1991, Lect. Notes Comput. Sci., 547, 1991, 17–38 | DOI | MR | Zbl
[2] Pogorelov B. A., Pudovkina M. A., “Razbieniya na bigrammakh i markovost algoritmov blochnogo shifrovaniya”, Matematicheskie voprosy kriptografii, 8:1 (2017), 5–40 | DOI | Zbl
[3] Knudsen L. R., Mathiassen J. E., “On the role of key schedules in attacks on iterated ciphers”, ESORICS 2004, Lect. Notes Comput. Sci., 3193, 2004, 322–334 | DOI
[4] Hornauer G., Stephan W., Wernsdorf R., “Markov ciphers and alternating groups”, EUROCRYPT'1993, Lect. Notes Comput. Sci., 765, 1993, 453–460 | DOI | MR
[5] Sachkov V. N., “Veroyatnostnye preobrazovateli i pravilnye multigrafy. 1”, Trudy po diskretnoi matematike, 1 (1997), 227–250 | Zbl
[6] Sachkov V. N., “Tsepi Markova iteratsionnykh sistem preobrazovanii”, Trudy po diskretnoi matematike, 6 (2002), 165–183
[7] Sachkov V. N., “Veroyatnostnye preobrazovateli i summy elementarnykh matrits. II”, Trudy po diskretnoi matematike, 8 (2005), 240–252 | Zbl
[8] Kovalchuk L. V., “Obobschennye markovskie shifry: postroenie otsenok prakticheskoi stoikosti k differentsialnym atakam”, Matematika i bezopasnost informatsionnykh tekhnologii (MABIT), MTsNMO, M., 2006
[9] Lisitskaya I. V., Dolgov V. I., “Blochnye simmetrichnye shifry i markovskie protsessy”, Prikladnaya radioelektronika, 11:2 (2012), 137–143
[10] Maksimov Yu. I., “Nekotorye rezultaty dlya zadachi ukrupneniya sostoyanii tsepei Markova”, Trudy po diskretnoi matematike, 8 (2005), 148–154
[11] Vaudenay S., “On the Lai-Massey Scheme”, ASIACRYPT'1999, Lect. Notes Comput. Sci., 1716, 1999, 8–19 | DOI | MR | Zbl
[12] Matsui M., Tokita T., “Cryptanalysis of a reduced version of the block cipher E2”, FSE 1999, Lect. Notes Comput. Sci., 1636, 1999, 71–80 | DOI | Zbl
[13] Moriai S., Sugita M., Aoki K., Kanda M., “Security of E2 against truncated differential cryptanalysis”, SAC 1999, Lect. Notes Comput. Sci., 1758, 2000, 106–117 | Zbl
[14] Reichardt B., Wagner D., “Markov truncated differential cryptanalysis of Skipjack”, SAC 2002, Lect. Notes Comput. Sci., 2595, 2003, 110–128 | DOI | MR | Zbl
[15] Blondeau C., “Improbable differential from impossible differential: on the validity of the model”, INDOCRYPT 2013, Lect. Notes Comput. Sci., 8250, 2013, 149–160 | DOI | Zbl
[16] Kemeni D., Snell D., Konechnye tsepi Markova, Nauka, M., 1970, 272 pp.
[17] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v 2 t., v. II, Gelios ARV, M., 2003
[18] Pogorelov B. A., Pudovkina M. A., “Faktorstruktury preobrazovanii”, Matematicheskie voprosy kriptografii, 3:3 (2012), 81–104 | DOI
[19] Pogorelov B. A., Pudovkina M. A., “$\otimes_{\mathbf{W}}$-markovost XSL-algoritmov blochnogo shifrovaniya, svyazannaya so svoistvami sloev raundovoi funktsii”, Matematicheskie metody kriptografii, 10 (2019) (to appear)