Periodic properties of multidimensional polynomial generator over the Galois ring. I
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 61-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Periodic properties of multidimensional polynomial substitutions over the Galois ring are investigated. Maximum $L_m(R)$ of cycle lengths of $m$-dimensional polynomial substitutions is computed. A method permitting to construct substitutions with cycle of length $L_m(R)$ is suggested. For a particular case the cycle type of $m$-dimensional polynomial substitution is founded. The paper generalizes earlier results to the case of arbitrary dimension $m$ and arbitrary Galois ring $R$.
@article{MVK_2018_9_3_a3,
     author = {O. A. Kozlitin},
     title = {Periodic properties of multidimensional polynomial generator over the {Galois} {ring.~I}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {61--98},
     year = {2018},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a3/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - Periodic properties of multidimensional polynomial generator over the Galois ring. I
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 61
EP  - 98
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a3/
LA  - ru
ID  - MVK_2018_9_3_a3
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T Periodic properties of multidimensional polynomial generator over the Galois ring. I
%J Matematičeskie voprosy kriptografii
%D 2018
%P 61-98
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a3/
%G ru
%F MVK_2018_9_3_a3
O. A. Kozlitin. Periodic properties of multidimensional polynomial generator over the Galois ring. I. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 61-98. http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a3/

[1] Viktorenkov V. E., “Orgraf polinomialnogo preobrazovaniya nad kommutativnym lokalnym koltsom”, Obozrenie prikl. i promyshl. matem., 7:2 (2000), 327

[2] Viktorenkov V. E., “O stroenii orgrafov polinomialnykh preobrazovanii nad konechnymi kommutativnymi koltsami s edinitsei”, Diskretnaya matematika, 29:3 (2017), 3–23 | DOI

[3] Ermilov D. M., “Svoistva polinomialnykh generatorov s vykhodnoi posledovatelnostyu naibolshego perioda nad koltsom Galua”, Prikladnaya diskretnaya matematika, 2015, no. 1 (27), 52–61

[4] Ermilov D. M., Kozlitin O. A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57 | DOI

[5] Ermilov D. M., Kozlitin O. A., “O stroenii grafa polinomialnogo preobrazovaniya koltsa Galua”, Matematicheskie voprosy kriptografii, 6:3 (2015), 47–73 | DOI

[6] Kozlitin O. A., “Otsenka dliny maksimalnogo tsikla v grafe polinomialnogo preobrazovaniya koltsa Galua–Eizenshteina”, Diskretnaya matematika, 29:4 (2017), 41–58 | DOI

[7] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | Zbl

[8] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | DOI | Zbl

[9] Lidl R., Niderraiter G., Konechnye polya, V 2 t., Mir, M., 1988, 824 pp.

[10] Nechaev A. A., “Bazis obobschennykh tozhdestv konechnogo kommutativnogo lokalnogo koltsa glavnykh idealov”, Algebra i logika, 18:2 (1979), 186–193 | MR | Zbl

[11] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139

[12] Nechaev A. A., “Polinomialnye preobrazovaniya konechnykh kommutativnykh kolets glavnykh idealov”, Matematicheskie zametki, 27:6 (1980), 885–899

[13] Anashin V. S., “Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers”, J. of Math. Sciences, 89:4 (1998), 1355–1390 | DOI | MR | Zbl

[14] Brawley J. V., Mullen G. L., “Functions and polynomials over Galois ring”, J. Number Theory, 41 (1992), 156–166 | DOI | MR | Zbl

[15] McDonald B. R., Finite Rings with Identity, Dekker, New York, 1974, ix+429 pp. | MR | Zbl

[16] Parvatov N. G., “On the period length of vector sequences generated by polynomials modulo prime powers”, Prikladnaya diskretnaya matematika, 2016, no. 1(31), 57–61 | MR