@article{MVK_2018_9_3_a2,
author = {A. M. Zubkov},
title = {New estimates for the variational distance between two distributions of a sample},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {45--60},
year = {2018},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a2/}
}
A. M. Zubkov. New estimates for the variational distance between two distributions of a sample. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 45-60. http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a2/
[1] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp.
[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 528 pp.
[3] Reyzin L., A note on the statistical difference of small direct products, Techn. Rep. BUCS-TR-2004-032, Boston Univ. Computer Science
[4] Renner R., On the variational distance of independently repeated experiments, cs.IT/0509013
[5] Bellare M., Impagliazzo R., A tool for obtaining tighter security analyses of pseudorandom function based constructions, with applications to $PRP \to PRF$ conversion, Cryptology ePrint Archive, Report 1999/024, http://eprint.iacr.org/1999/024
[6] Sahai A., Vadhan S., “Manipulating statistical difference”, Randomization Methods in Algorithm Design, DIMACS Workshop (December 1997), DIMACS Ser. in Discr. Math. and Theor. Comput. Sci., 43, Amer. Math. Soc., Providence, R.I., 1999, 251–270 | DOI | MR | Zbl
[7] Sahai A., Vadhan S., “A complete problem for statistical zero knowledge”, J. ACM, 50:2 (2003), 196–249 | DOI | MR | Zbl
[8] Slud E. V., “Distributional inequalities for the binomial law”, Ann. Probab., 5:3 (1977), 404–412 | DOI | MR | Zbl
[9] Zubkov A. M., “New inequalities for the binomial law and for the total variation distance between iid samples”, Proc. 10th Int. Conf. «Computer Data Analysis and Modeling» (Minsk, 2013), v. 2, Publ. center of BSU, Minsk, 48–50