New estimates for the variational distance between two distributions of a sample
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 45-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a pair of samples consisting of i.i.d. random variables we obtain new upper and lower bounds for the total variation distance between their distributions. In cases of small distances these estimates are proportional to the total variation distance between distributions of elements of samples and the square root of the sample volume with coefficients depending on the distributions of elements of samples. The results are useful for estimates of the sample volume necessary for testing close hypotheses.
@article{MVK_2018_9_3_a2,
     author = {A. M. Zubkov},
     title = {New estimates for the variational distance between two distributions of a sample},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {45--60},
     year = {2018},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
TI  - New estimates for the variational distance between two distributions of a sample
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 45
EP  - 60
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a2/
LA  - ru
ID  - MVK_2018_9_3_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%T New estimates for the variational distance between two distributions of a sample
%J Matematičeskie voprosy kriptografii
%D 2018
%P 45-60
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a2/
%G ru
%F MVK_2018_9_3_a2
A. M. Zubkov. New estimates for the variational distance between two distributions of a sample. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 45-60. http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a2/

[1] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp.

[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 528 pp.

[3] Reyzin L., A note on the statistical difference of small direct products, Techn. Rep. BUCS-TR-2004-032, Boston Univ. Computer Science

[4] Renner R., On the variational distance of independently repeated experiments, cs.IT/0509013

[5] Bellare M., Impagliazzo R., A tool for obtaining tighter security analyses of pseudorandom function based constructions, with applications to $PRP \to PRF$ conversion, Cryptology ePrint Archive, Report 1999/024, http://eprint.iacr.org/1999/024

[6] Sahai A., Vadhan S., “Manipulating statistical difference”, Randomization Methods in Algorithm Design, DIMACS Workshop (December 1997), DIMACS Ser. in Discr. Math. and Theor. Comput. Sci., 43, Amer. Math. Soc., Providence, R.I., 1999, 251–270 | DOI | MR | Zbl

[7] Sahai A., Vadhan S., “A complete problem for statistical zero knowledge”, J. ACM, 50:2 (2003), 196–249 | DOI | MR | Zbl

[8] Slud E. V., “Distributional inequalities for the binomial law”, Ann. Probab., 5:3 (1977), 404–412 | DOI | MR | Zbl

[9] Zubkov A. M., “New inequalities for the binomial law and for the total variation distance between iid samples”, Proc. 10th Int. Conf. «Computer Data Analysis and Modeling» (Minsk, 2013), v. 2, Publ. center of BSU, Minsk, 48–50