@article{MVK_2018_9_3_a0,
author = {E. K. Alekseev and V. D. Nikolaev and S. V. Smyshlyaev},
title = {On the security properties of {Russian} standardized elliptic curves},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {5--32},
year = {2018},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a0/}
}
TY - JOUR AU - E. K. Alekseev AU - V. D. Nikolaev AU - S. V. Smyshlyaev TI - On the security properties of Russian standardized elliptic curves JO - Matematičeskie voprosy kriptografii PY - 2018 SP - 5 EP - 32 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a0/ LA - en ID - MVK_2018_9_3_a0 ER -
E. K. Alekseev; V. D. Nikolaev; S. V. Smyshlyaev. On the security properties of Russian standardized elliptic curves. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 3, pp. 5-32. http://geodesic.mathdoc.fr/item/MVK_2018_9_3_a0/
[1] Information technology. Cryptographic data security. Signature and verification processes of [electronic] digital signature, GOST R 34.10-2001, Gosudarstvennyi Standart of Russian Federation, Government Committee of Russia for Standards, 2001 (in Russian)
[2] Popov V., Kurepkin I., Leontiev S., “Additional cryptographic algorithms for use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 algorithms”, CRYPTO-PRO (2006) (in Russian) https://tools.ietf.org/html/rfc4357
[3] Information technology. Cryptographic data security. Signature and verification processes of [electronic] digital signature, GOST R 34.10-2012, Federal Agency on Technical Regulating and Metrology, 2012 (in Russian)
[4] The use of cryptographic algorithms accompanying the usage of standards GOST R 34.10-2012 and GOST R 34.11-2012, Standardization recommendations, Technical Committee 26. Federal Agency on Technical Regulating and Metrology, 2014 (in Russian)
[5] Alekseev E., Oshkin I., Popov V., Leontiev S., Podobaev V., Belyavsky D., Guidelines on the cryptographic algorithms to accompany the usage of standards GOST R 34.10-2012 and GOST R 34.11-2012, RFC 7836, ed. Smyshlyaev S., 2016 (in Russian) https://tools.ietf.org/html/rfc7836.html | MR
[6] Alekseev E. K., Oshkin I. B., Popov V. O., Smyshlyaev S. V., Sonina L. A., “On the perspectives of the usage of twisted Edwards curves with the GOST R 34.11-2012 digital signature and the corresponding key agreement algorithm”, Information Security Problems. Computer Systems, 3 (2014), 60–66 (in Russian)
[7] Information technology. Cryptographic data security. Parameters of elliptic curves for cryptographic algorithms and protocols, Federal Agency on Technical Regulating and Metrology, 2016 (in Russian)
[8] Information technology. Cryptographic Data Security. Hashing function, GOST R 34.11-2012, Federal Agency on Technical Regulating and Metrology, 2012 (in Russian)
[9] Standards for Efficient Cryptography Group: Recommended Elliptic Curve Domain Parameters. Version 1.0, SEC 2, , 2000 www.secg.org/SEC2-Ver-1.0.pdf
[10] Bernstein D. J., Chou T., Chuengsatiansup C., Huelsing A., Lambooij E., Lange T., Niederhagen R., van Vredendaal C., How to manipulate curve standards: a white paper for the black hat,, http://bada55.cr.yp.to/pubs.html
[11] Discrete Math. Appl., 18:4 (2008), 427–437 (in English) | DOI | DOI | MR | Zbl
[12] Alekseev E. K., Oshkin I. B., Popov V. O., Smyshlyaev S. V., “On the cryptographic properties of algorithms accompanying the applications of standards GOST R 34.11-2012 and GOST R 34.10-2012”, Mathematical Aspects of Cryptography, 7:1 (2016), 5–38 (in Russian) | MR
[13] Shoup V., “Lower bounds for discrete logarithms and related problems”, EUROCRYPT 97, Lect. Notes Comput. Sci., 1233, 1997, 256–266 | DOI | MR
[14] Mathematical Notes, 55:2 (1994), 165–172 (in English) | DOI | MR | Zbl
[15] Pollard J. M., “Monte Carlo methods for index computation $\pmod p$”, Math. Comput., 32 (1978), 918–924 | MR | Zbl
[16] Vercauteren F. (ed.), Final Report on Main Computational Assumptions in Cryptography, ECRYPT II, ICT-2007-216676, http://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf
[17] SafeCurves: choosing safe curves for elliptic-curve cryptography, https://safecurves.cr.yp.to/index.html
[18] Semaev I. A., “Evaluation of discrete logarithms in a group of $p$-torsion points of an elliptic curve in characteristic $p$”, Math. Comput., 67 (1998), 353–356 | DOI | MR | Zbl
[19] Menezes A., Vanstone S., “Reducing elliptic curve logarithms to logarithms in a finite field”, IEEE Trans. Inform. Theory, IT, 39:5 (1993), 1639–1646 | DOI | MR | Zbl
[20] Petit C., Kosters M., Messeng A., “Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields”, PKC 2016, v. II, Lect. Notes Comput. Sci., 9615, 2016, 3–18 | DOI | MR | Zbl
[21] Koblitz N., A Course in Number Theory and Cryptography, Springer-Verlag, Berlin–Heidelberg etc., 1987, viii+208 pp. ; Koblits N., Kurs teorii chisel i kriptografii, TVP, M., 2001, 254 pp. | MR | Zbl
[22] Semaev I. A., Summation polynomials and the discrete logarithm problem on elliptic curves, Cryptology ePrint Archive: Report 2004/031
[23] Semaev I. A., New algorithm for the discrete logarithm problem on elliptic curves, Cryptology ePrint Archive: Report 2015/310
[24] Faugere J.-C., “A new efficient algorithm for computing Groebner bases $(F_4)$”, J. Pure Appl. Algebra, 139:1–3 (1999), 61–88 | DOI | MR | Zbl
[25] Crandall R., Pomerance C., Prime Numbers: A Computational Perspective, Springer, N.-Y. etc., 2001, xv+545 pp. | MR
[26] Collins G., “The calculation of multivariate polynomial resultants”, J. Assoc. Comput. Mach., 18:4 (1971), 515–532 | DOI | MR | Zbl
[27] Diem C., “On the discrete logarithm problem in elliptic curves. II”, Algebra Number Theory, 7:6 (2013), 1281–1323 | DOI | MR | Zbl
[28] Huang Y.-J., Petit C., Shinohara N., Takagi T., On generalized first fall degree assumptions, Cryptology ePrint Archive: Report 2015/358