@article{MVK_2018_9_2_a8,
author = {A. A. Minakov},
title = {Poisson approximation for the number of non-decreasing runs in {Markov} chains},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {103--116},
year = {2018},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a8/}
}
A. A. Minakov. Poisson approximation for the number of non-decreasing runs in Markov chains. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 103-116. http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a8/
[1] Barbour A. D., Holst L., Janson S., Poisson approximation, Oxford Univ. Press, Oxford, 1992, 280 pp. | MR | Zbl
[2] A. D. Barbour, L. H. Y. Chen (eds.), An Introduction to Stein's Method, Singapore Univ. Press, Singapore, 2005, 238 pp. | MR | Zbl
[3] Billingsley P., Convergence of Probability Measures, v. 2, John Wiley Sons, Inc., New York, 1999, 296 pp. | MR
[4] Chryssaphinou O., Papastavridis S., Vaggelatou E., “Poisson limit theorems for the appearances of attributes”, Stein's method and applications, eds. A. D. Barbour, L. H. Y. Chen, Singapore Univ. Press, Singapore, 2005, 19–35 | DOI | MR
[5] Goncharov V. L., “From the domain of combinatorics”, Izv. Akad. Nauk SSSR, Ser. Mat., 8:1 (1944), 3–48 (In Russian) | Zbl
[6] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985, 656 pp. | MR | Zbl
[7] Lindvall T., Lectures on the Coupling Method, John Wiley Sons, Inc., New York, 1992, 270 pp. | MR
[8] Mezhennaya N. M., “Multidimensional normal theorem for number of monotone tuples with fixed length in a random equiprobable sequence”, Obozrenie prikl. i promyshl. matem., 14:3 (2007), 503–505 (In Russian)
[9] Minakov A. A., “Compound Poisson approximation for the distribution of the number of monotone tuples in random sequence”, Prikl. Diskr. Mat., 2015, no. 2(28), 21–29 (In Russian)
[10] Pittel B. G., “Limiting behavior of a process of runs”, Ann. Probab., 9 (1981), 119–129 | DOI | MR | Zbl
[11] Wolfowitz J., “Asymptotics distribution of runs up and down”, Ann. Math. Statist., 15:2 (1944), 163–172 | DOI | MR | Zbl