Poisson approximation for the number of non-decreasing runs in Markov chains
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 103-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let a sequence $X_1, X_2, \dots, X_n$ be a segment of a stationary irreducible and aperiodic Markov chain with state space $\mathcal{A} = \{1,\dots, N\}$, $N \geqslant 2$. We study the non-overlapping appearances of non-decreasing runs in the sequence $X_1, X_2, \dots, X_n$. By means of Stein method we estimate the total variation distance between the distribution of the number of non-overlapping appearances of non-decreasing monotone runs and the Poisson distribution. As a corollary we prove corresponding limit theorem.
@article{MVK_2018_9_2_a8,
     author = {A. A. Minakov},
     title = {Poisson approximation for the number of non-decreasing runs in {Markov} chains},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {103--116},
     year = {2018},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a8/}
}
TY  - JOUR
AU  - A. A. Minakov
TI  - Poisson approximation for the number of non-decreasing runs in Markov chains
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 103
EP  - 116
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a8/
LA  - en
ID  - MVK_2018_9_2_a8
ER  - 
%0 Journal Article
%A A. A. Minakov
%T Poisson approximation for the number of non-decreasing runs in Markov chains
%J Matematičeskie voprosy kriptografii
%D 2018
%P 103-116
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a8/
%G en
%F MVK_2018_9_2_a8
A. A. Minakov. Poisson approximation for the number of non-decreasing runs in Markov chains. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 103-116. http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a8/

[1] Barbour A. D., Holst L., Janson S., Poisson approximation, Oxford Univ. Press, Oxford, 1992, 280 pp. | MR | Zbl

[2] A. D. Barbour, L. H. Y. Chen (eds.), An Introduction to Stein's Method, Singapore Univ. Press, Singapore, 2005, 238 pp. | MR | Zbl

[3] Billingsley P., Convergence of Probability Measures, v. 2, John Wiley Sons, Inc., New York, 1999, 296 pp. | MR

[4] Chryssaphinou O., Papastavridis S., Vaggelatou E., “Poisson limit theorems for the appearances of attributes”, Stein's method and applications, eds. A. D. Barbour, L. H. Y. Chen, Singapore Univ. Press, Singapore, 2005, 19–35 | DOI | MR

[5] Goncharov V. L., “From the domain of combinatorics”, Izv. Akad. Nauk SSSR, Ser. Mat., 8:1 (1944), 3–48 (In Russian) | Zbl

[6] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985, 656 pp. | MR | Zbl

[7] Lindvall T., Lectures on the Coupling Method, John Wiley Sons, Inc., New York, 1992, 270 pp. | MR

[8] Mezhennaya N. M., “Multidimensional normal theorem for number of monotone tuples with fixed length in a random equiprobable sequence”, Obozrenie prikl. i promyshl. matem., 14:3 (2007), 503–505 (In Russian)

[9] Minakov A. A., “Compound Poisson approximation for the distribution of the number of monotone tuples in random sequence”, Prikl. Diskr. Mat., 2015, no. 2(28), 21–29 (In Russian)

[10] Pittel B. G., “Limiting behavior of a process of runs”, Ann. Probab., 9 (1981), 119–129 | DOI | MR | Zbl

[11] Wolfowitz J., “Asymptotics distribution of runs up and down”, Ann. Math. Statist., 15:2 (1944), 163–172 | DOI | MR | Zbl