@article{MVK_2018_9_2_a7,
author = {A. M. Zubkov and V. I. Kruglov},
title = {On quantiles of minimal codeword weights of random linear codes over~$\mathbf{F}_p$},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {99--102},
year = {2018},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/}
}
TY - JOUR
AU - A. M. Zubkov
AU - V. I. Kruglov
TI - On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$
JO - Matematičeskie voprosy kriptografii
PY - 2018
SP - 99
EP - 102
VL - 9
IS - 2
UR - http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/
LA - en
ID - MVK_2018_9_2_a7
ER -
A. M. Zubkov; V. I. Kruglov. On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 99-102. http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/
[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions, Tenth Printing, National Bureau of Standards, 1972, xiv+1046 pp. | MR | Zbl
[2] Berlekamp E. R., McEliece R. J., van Tilborg H. C. A., “On the inherent intractability of certain coding problems”, IEEE Trans. Inf. Theory, 24 (1978), 384–386 | DOI | MR | Zbl
[3] Canteaut A., Chabaud F., “A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511”, IEEE Trans. Inf. Theory, 44:1 (1988), 367–378 | DOI | MR
[4] Feller W., An Introduction to Probability Theory and Its Applications, v. 1, 3rd ed., J. Wiley Sons, N.Y. etc., 1970 | MR
[5] McEliece R. J., A public-key cryptosystem based on algebraic coding theory, Jet Propulsion Lab. DSN Progress Report 42-44, 1978 http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
[6] Zubkov A. M., Serov A. A., “A complete proof of universal inequalities for distribution function of binomial law”, Theory Probab. Appl., 57:3 (2012), 597–602 | MR
[7] Zubkov A. M., Kruglov V. I., “Statistical characteristics of weight spectra of random linear codes over $\mathrm{GF}(p)$”, Matem. Voprosy Kriptogr., 5:1 (2014), 27–38 (in Russian) | DOI