On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 99-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose explicit equations for two-sided estimates of quantiles of minimal non-zero codeword weight distributions for random equiprobable linear code with given dimension over the prime field $\mathbf{F}_p$. It is shown that the differences between quantiles of these distributions are bounded by values depending only on $p$ and levels of quantiles.
@article{MVK_2018_9_2_a7,
     author = {A. M. Zubkov and V. I. Kruglov},
     title = {On quantiles of minimal codeword weights of random linear codes over~$\mathbf{F}_p$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {99--102},
     year = {2018},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - V. I. Kruglov
TI  - On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 99
EP  - 102
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/
LA  - en
ID  - MVK_2018_9_2_a7
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A V. I. Kruglov
%T On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$
%J Matematičeskie voprosy kriptografii
%D 2018
%P 99-102
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/
%G en
%F MVK_2018_9_2_a7
A. M. Zubkov; V. I. Kruglov. On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 99-102. http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a7/

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions, Tenth Printing, National Bureau of Standards, 1972, xiv+1046 pp. | MR | Zbl

[2] Berlekamp E. R., McEliece R. J., van Tilborg H. C. A., “On the inherent intractability of certain coding problems”, IEEE Trans. Inf. Theory, 24 (1978), 384–386 | DOI | MR | Zbl

[3] Canteaut A., Chabaud F., “A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511”, IEEE Trans. Inf. Theory, 44:1 (1988), 367–378 | DOI | MR

[4] Feller W., An Introduction to Probability Theory and Its Applications, v. 1, 3rd ed., J. Wiley Sons, N.Y. etc., 1970 | MR

[5] McEliece R. J., A public-key cryptosystem based on algebraic coding theory, Jet Propulsion Lab. DSN Progress Report 42-44, 1978 http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

[6] Zubkov A. M., Serov A. A., “A complete proof of universal inequalities for distribution function of binomial law”, Theory Probab. Appl., 57:3 (2012), 597–602 | MR

[7] Zubkov A. M., Kruglov V. I., “Statistical characteristics of weight spectra of random linear codes over $\mathrm{GF}(p)$”, Matem. Voprosy Kriptogr., 5:1 (2014), 27–38 (in Russian) | DOI