@article{MVK_2018_9_2_a6,
author = {K. D. Zhukov},
title = {Approximate common divisor problem and lattice sieving},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {87--98},
year = {2018},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a6/}
}
K. D. Zhukov. Approximate common divisor problem and lattice sieving. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 87-98. http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a6/
[1] Howgrave-Graham N., “Approximate integer common divisors”, Lect. Notes Comput. Sci., 2146, 2001, 51–66 | DOI | MR | Zbl
[2] Franke J., Kleinjung T., “Continued fractions and lattice sieving”, SHARCS 2005 http://www.hyperelliptic.org/tanja/SHARCS/talks/FrankeKleinjung.pdf
[3] May A., Ritzenhofen M., “Implicit factoring: on polynomial time factoring given only an implicit hint”, Lect. Notes Comput Sci., 5443, 2009, 1–14 | DOI | MR | Zbl
[4] Van Dijk M., Gentry C., Halevi S., Vaikuntanathan V., “Fully homomorphic encryption over the integers”, Lect. Notes Comput Sci., 6110, 2010, 24–43 | DOI | MR | Zbl
[5] Sarkar S., Maitra S., “Approximate integer common divisor problem relates to implicit factorization”, IEEE Trans. Inf. Theory, 57 (2011), 4002–4013 | DOI | MR | Zbl
[6] Zhukov K. D., “Approximate common divisor problem and continued fractions”, Mathematical Aspects of Cryptography, 7:2 (2016), 61–70 | MR