Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 59-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A group generated by the set of the round functions is often used to describe properties of a block cipher. The results obtained by A. S. Maslov in 2007 are used to prove that round functions of Kuznyechik and Stribog generate the alternating groups. We prove a theorem on the mixing properties of linear transformations and apply this theorem to the family of Stribog-like ciphers (Stribog, Anubis, etc.).
@article{MVK_2018_9_2_a4,
     author = {V. V. Vlasova and M. A. Pudovkina},
     title = {Group properties of block ciphers of the {Russian} standards {GOST} {R} 34.11-2012 and {GOST} {R} 34.12-2015},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {59--70},
     year = {2018},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a4/}
}
TY  - JOUR
AU  - V. V. Vlasova
AU  - M. A. Pudovkina
TI  - Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015
JO  - Matematičeskie voprosy kriptografii
PY  - 2018
SP  - 59
EP  - 70
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a4/
LA  - en
ID  - MVK_2018_9_2_a4
ER  - 
%0 Journal Article
%A V. V. Vlasova
%A M. A. Pudovkina
%T Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015
%J Matematičeskie voprosy kriptografii
%D 2018
%P 59-70
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a4/
%G en
%F MVK_2018_9_2_a4
V. V. Vlasova; M. A. Pudovkina. Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 2, pp. 59-70. http://geodesic.mathdoc.fr/item/MVK_2018_9_2_a4/

[1] Advanced Encryption Standard (AES), FIPS Publication 197, 2001 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[2] ISO/IEC 10118-3: Information Technology — Security Techniques — Hash-functions — Part 3: Dedicated hash-functions, Internat. Organiz. for Standardization, 2004

[3] GOST R 34.11-2012. Information technology. Cryptographic data security. Hash-function, Standardinform, M., 2012, 38 pp.

[4] GOST R 34.12-2015. Information technology. Cryptographic data security. Block cipher, Standardinform, M., 2015, 25 pp.

[5] Glukhov M. M., Pogorelov B. A., “On some applications of groups in cryptography”, Math. and Security of Inform. Technol. (MSU, 2004), MCNMO, M., 2005, 19–31 (In Russian) | MR

[6] Caranti A., Dalla Volta F., Sala M., Villani F., Imprimitive permutation groups generated by the round functions of key-alternating block ciphers and truncated differential cryptanalysis, 2006, arXiv: math/0606022v2

[7] Wernsdorf R., “The round functions of RIJNDAEL generate the alternating group”, FSE 2002, Lect. Notes Comput. Sci., 2365, 2002, 143–148 | DOI | Zbl

[8] Sparr R., Wernsdorf R., “Group theoretic properties of Rijndael-like ciphers”, Discrete Appl. Math., 156 (2008), 3139–3149 | DOI | MR | Zbl

[9] Caranti A., Dalla Volta F., Sala M., “An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher”, Des., Codes and Cryptogr., 52:3 (2009), 293–301 | DOI | MR | Zbl

[10] Maslov A. S., “On sufficient conditions to generate the alternating group by SA-permutations”, Trudy Inst. Matem. Minsk, 15:2 (2007), 58–68 (In Russian) | MR | Zbl

[11] Wernsdorf R., “The one-round functions of the DES generate the alternating group”, Lect. Notes Comput. Sci., 658, 1992, 99–112 | DOI | MR

[12] Kazymyrov O., Kazymyrova V., Algebraic aspects of the Russian Hash Standard GOST R 34.11-2012, Cryptology ePrint Archive, 2013/556, , 2013 http://eprint.iacr.org/2013/556

[13] Sachkov V. N., Tarakanov V. E., Combinatorics of Nonnegative Matrices, TVP Sci. Publ., M., 2000, 452 pp. (in Russian) | MR | Zbl