Controlled multinomial allocation scheme
Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 1, pp. 75-88
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the distribution of some characteristics (in particular, the number of empty cells) for the allocation scheme controlled by a stationary random process satisfying uniform mixing property. The estimates of the accuracy of Poisson approximation for these distributions and the corresponding limit theorems are obtained.
@article{MVK_2018_9_1_a4,
author = {V. G. Mikhailov},
title = {Controlled multinomial allocation scheme},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {75--88},
year = {2018},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2018_9_1_a4/}
}
V. G. Mikhailov. Controlled multinomial allocation scheme. Matematičeskie voprosy kriptografii, Tome 9 (2018) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/MVK_2018_9_1_a4/
[1] Elliott R. J., Aggoun L., Moore J. B., Hidden Markov Models, Springer-Verlag, N.-Y., 1995 | MR | Zbl
[2] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976
[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[4] Mikhailov V. G., “O veroyatnosti nalichiya v sluchainoi posledovatelnosti tsepochek s odinakovoi strukturoi”, Diskretnaya matematika, 28:3 (2016), 97–110 | DOI | Zbl
[5] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Univ. Press, Oxford, 1992 | MR | Zbl