Involutions with given weight deficit corresponding to the Cayley table of the finite Abelian group
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 4, pp. 117-134
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the weight characteristics of involutions over finite Abelian groups $G_n$ of order $n\geqslant3$. For random equiprobable involution the distribution of the number of its binary cycles coinciding with binary cycles of fixed involution is found, the convergence of this distribution to the Poisson distribution with the parameter $\lambda=\frac12$ as $n\to\infty$ is proved. Mean value of the deficit of random equiprobable convolution is computed.
@article{MVK_2017_8_4_a5,
author = {V. N. Sachkov},
title = {Involutions with given weight deficit corresponding to the {Cayley} table of the finite {Abelian} group},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {117--134},
year = {2017},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_4_a5/}
}
TY - JOUR AU - V. N. Sachkov TI - Involutions with given weight deficit corresponding to the Cayley table of the finite Abelian group JO - Matematičeskie voprosy kriptografii PY - 2017 SP - 117 EP - 134 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/MVK_2017_8_4_a5/ LA - ru ID - MVK_2017_8_4_a5 ER -
V. N. Sachkov. Involutions with given weight deficit corresponding to the Cayley table of the finite Abelian group. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 4, pp. 117-134. http://geodesic.mathdoc.fr/item/MVK_2017_8_4_a5/
[1] Sachkov V. N., “Kombinatornye svoistva differentsialno 2-ravnomernykh podstanovok”, Matematicheskie voprosy kriptografii, 6:1 (2015), 159–180
[2] Sachkov V. N., Kruglov I. A., “Vesovye defitsity involyutsii i podstanovok”, Matematicheskie voprosy kriptografii, 7:4 (2016), 95–116
[3] Sachkov V. N., Kurs kombinatornogo analiza, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2013, 336 pp.