Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. II
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 3, pp. 85-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A description of GA-lattices previously introduced by the author is given and easily solved systems of equations concordant with these lattices are presented.
@article{MVK_2017_8_3_a3,
     author = {S. V. Polin},
     title = {Permutation lattices of equivalence relations on the {Cartesian} products and systems of equations concordant with these {lattices.~II}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {85--108},
     year = {2017},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a3/}
}
TY  - JOUR
AU  - S. V. Polin
TI  - Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. II
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 85
EP  - 108
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a3/
LA  - ru
ID  - MVK_2017_8_3_a3
ER  - 
%0 Journal Article
%A S. V. Polin
%T Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. II
%J Matematičeskie voprosy kriptografii
%D 2017
%P 85-108
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a3/
%G ru
%F MVK_2017_8_3_a3
S. V. Polin. Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. II. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 3, pp. 85-108. http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a3/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 224 pp.

[2] Belousov V. D., “Sistemy kvazigrupp s obobschennymi tozhdestvami”, Uspekhi matem. nauk, XX:1(121) (1965), 75–146 | Zbl

[3] Glukhov M. M., “O metodakh postroeniya sistem ortogonalnykh kvazigrupp s ispolzovaniem grupp”, Matematicheskie voprosy kriptografii, 2:4 (2011), 5–24

[4] Gorchinskii Yu. N., “O gomomorfizmakh mnogoosnovnykh universalnykh algebr v svyazi s kriptograficheskimi primeneniyami”, Trudy po diskretnoi matematike, v. 1, Nauchnoe izd-vo TVP, M., 1997, 67–84

[5] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp.

[6] Kon P., Universalnaya algebra, Mir, M., 1968, 359 pp.

[7] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973, 40 pp.

[8] Maltsev A. I., “K obschei teorii algebraicheskikh sistem”, Matem. sb. (novaya seriya), 35(77):1 (1954), 3–20 | Zbl

[9] Polin S. V., “Reshenie uravnenii metodom posledovatelnogo gruppirovaniya i ego optimizatsiya”, Matematicheskie voprosy kriptografii, 3:1 (2012), 97–123

[10] Polin S. V., “Sistemy uravnenii i reshetki kongruentsii universalnykh algebr”, Matematicheskie voprosy kriptografii, 4:4 (2013), 109–144

[11] Polin S. V., “Perestanovochnye reshetki otnoshenii ekvivalentnosti dekartovykh proizvedenii”, Matematicheskie voprosy kriptografii, 5:3 (2014), 81–116

[12] Polin S. V., “Perestanovochnye reshetki otnoshenii ekvivalentnosti na dekartovykh proizvedeniyakh i soglasovannye s nimi sistemy uravnenii. I”, Matematicheskie voprosy kriptografii, 6:1 (2015), 135–158

[13] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp.