Parametric models for random combinatorial objects of exponential type and their probabilistic-statistical analysis
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 3, pp. 41-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some problems of probabilistic combinatorics are investigated when on the set of combinatorial objects under consideration some parametric probabilistic measure is defined. We compare asymptotic properties of random partitions of an $n$-set and of $n$-permutations in a parametric model is performed.
@article{MVK_2017_8_3_a1,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Parametric models for random combinatorial objects of exponential type and their probabilistic-statistical analysis},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {41--56},
     year = {2017},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a1/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Parametric models for random combinatorial objects of exponential type and their probabilistic-statistical analysis
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 41
EP  - 56
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a1/
LA  - ru
ID  - MVK_2017_8_3_a1
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Parametric models for random combinatorial objects of exponential type and their probabilistic-statistical analysis
%J Matematičeskie voprosy kriptografii
%D 2017
%P 41-56
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a1/
%G ru
%F MVK_2017_8_3_a1
G. I. Ivchenko; Yu. I. Medvedev. Parametric models for random combinatorial objects of exponential type and their probabilistic-statistical analysis. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 3, pp. 41-56. http://geodesic.mathdoc.fr/item/MVK_2017_8_3_a1/

[1] Sachkov V. N., “Sluchainye razbieniya mnozhestv”, Teoriya veroyatn. i ee primen., 19:1 (1974), 178–194

[2] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978, 288 pp.

[3] Sachkov V. N., “Sluchainye razbieniya mnozhestv”, Matematicheskie voprosy kibernetiki, 8, 1999, 33–54 | Zbl

[4] Sachkov V. N., “Razbieniya s pogloscheniyami i protivorechivye razbieniya mnozhestv”, Trudy po diskretnoi matematike, 4 (2001), 201–222 | Zbl

[5] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, 2-e izd., MTsNMO, M., 1978, 424 pp.

[6] Ivchenko G. I., Medvedev Yu. I., “Ob odnom klasse neravnoveroyatnykh podstanovok sluchainoi stepeni”, Trudy po diskretnoi matematike, 7 (2003), 75–88

[7] Ivchenko G. I., Medvedev Yu. I., Sachkov V. N., “Nekotorye problemy veroyatnostnoi kombinatoriki”, Matematika i bezopasnost inf. tekhnologii, Mater. konf., MTsNMO, M., 2004, 45–52

[8] Ivchenko G. I., Medvedev Yu. I., “Sluchainye kombinatornye ob'ekty”, Doklady AN, 396:2 (2004), 151–154 | Zbl

[9] Ivchenko G. I., Medvedev Yu. I., “Statistika parametricheskoi modeli sluchainykh podstanovok”, Trudy po diskretnoi matematike, 8 (2004), 116–127

[10] Ivchenko G. I., Medvedev Yu. I., “Sluchainye podstanovki: obschaya parametricheskaya model”, Diskretnaya matematika, 18:4 (2006), 105–112 | DOI | Zbl

[11] Ivchenko G. I., Medvedev Yu. I., “Sluchainye kombinatornye ob'ekty v obschei parametricheskoi modeli”, Trudy po diskretnoi matematike, 10 (2007), 73–86

[12] Ivchenko G. I., Soboleva M. V., “Nekotorye neravnoveroyatnye modeli sluchainykh podstanovok”, Diskretnaya matematika, 23:3 (2011), 23–31 | DOI

[13] Vatutin V. A., Mikhailov V. G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 27:4 (1982), 684–692 | Zbl

[14] Bell E. T., “Exponential polynomials”, Ann. Math., 35:2 (1934), 258–277 | DOI | MR

[15] Harper L., “Stirling behavior is asymptotically normal”, Ann. Math. Stat., 38:2 (1967), 410–414 | DOI | MR | Zbl

[16] Hwang H. K., “On convergence rates in the central limit theorems for combinatorial structures”, Eur. J. Combin., 19:3 (1998), 329–343 | DOI | MR | Zbl