Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 87-96
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose several asymptotically size-optimal Boolean circuits synthesis methods that implement arbitrary Boolean functions of a given number of Boolean variables with a given protection level from functionality inference when concealing some number of local interconnections. These methods rely on the structure of Boolean circuits over arbitrary finite complete basis. Constructed by methods of generalized decomposition and universal systems of Boolean functions.
@article{MVK_2017_8_2_a7,
author = {S. A. Lozhkin and M. S. Shupletsov and B. R. Danilov},
title = {Synthesis of asymptotically size-optimal {Boolean} circuits protected from functionality inference},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {87--96},
year = {2017},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/}
}
TY - JOUR AU - S. A. Lozhkin AU - M. S. Shupletsov AU - B. R. Danilov TI - Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference JO - Matematičeskie voprosy kriptografii PY - 2017 SP - 87 EP - 96 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/ LA - en ID - MVK_2017_8_2_a7 ER -
%0 Journal Article %A S. A. Lozhkin %A M. S. Shupletsov %A B. R. Danilov %T Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference %J Matematičeskie voprosy kriptografii %D 2017 %P 87-96 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/ %G en %F MVK_2017_8_2_a7
S. A. Lozhkin; M. S. Shupletsov; B. R. Danilov. Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/
[1] Lozhkin S. A., “High-precision estimates for the complexity of control systems from some classes”, Matem. voprosy kibernetiki, 6 (1996), 189–214 (in Russian) | MR | Zbl
[2] Lozhkin S. A., Shiganov A. E., “High accuracy asymptotic bounds on the BDD size and weight of the hardest functions”, Fundamenta Informaticae, 104:3 (2010), 239–253 | MR | Zbl
[3] Lupanov O. B., Asymptotic estimates of complexity of control systems, Izdatel'stvo MGU, M., 1984 (in Russian)
[4] Lupanov O. B., “On an approach to the synthesis of control systems — principle of local coding”, Problemy kibernetiki, 14 (1965), 31–110 (in Russian) | MR | Zbl