Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 87-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose several asymptotically size-optimal Boolean circuits synthesis methods that implement arbitrary Boolean functions of a given number of Boolean variables with a given protection level from functionality inference when concealing some number of local interconnections. These methods rely on the structure of Boolean circuits over arbitrary finite complete basis. Constructed by methods of generalized decomposition and universal systems of Boolean functions.
@article{MVK_2017_8_2_a7,
     author = {S. A. Lozhkin and M. S. Shupletsov and B. R. Danilov},
     title = {Synthesis of asymptotically size-optimal {Boolean} circuits protected from functionality inference},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {87--96},
     year = {2017},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/}
}
TY  - JOUR
AU  - S. A. Lozhkin
AU  - M. S. Shupletsov
AU  - B. R. Danilov
TI  - Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 87
EP  - 96
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/
LA  - en
ID  - MVK_2017_8_2_a7
ER  - 
%0 Journal Article
%A S. A. Lozhkin
%A M. S. Shupletsov
%A B. R. Danilov
%T Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference
%J Matematičeskie voprosy kriptografii
%D 2017
%P 87-96
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/
%G en
%F MVK_2017_8_2_a7
S. A. Lozhkin; M. S. Shupletsov; B. R. Danilov. Synthesis of asymptotically size-optimal Boolean circuits protected from functionality inference. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a7/

[1] Lozhkin S. A., “High-precision estimates for the complexity of control systems from some classes”, Matem. voprosy kibernetiki, 6 (1996), 189–214 (in Russian) | MR | Zbl

[2] Lozhkin S. A., Shiganov A. E., “High accuracy asymptotic bounds on the BDD size and weight of the hardest functions”, Fundamenta Informaticae, 104:3 (2010), 239–253 | MR | Zbl

[3] Lupanov O. B., Asymptotic estimates of complexity of control systems, Izdatel'stvo MGU, M., 1984 (in Russian)

[4] Lupanov O. B., “On an approach to the synthesis of control systems — principle of local coding”, Problemy kibernetiki, 14 (1965), 31–110 (in Russian) | MR | Zbl