New methods of error correction in quantum cryptography using low-density parity-check codes
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 77-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

he problem of error correction in quantum cryptography is considered, including the estimation of error rate. We show that low-density parity-check (LDPC) codes are appropriate for this problem, and propose some modifications to achieve better code performance, taking into account the special properties of quantum cryptography.
@article{MVK_2017_8_2_a6,
     author = {D. A. Kronberg},
     title = {New methods of error correction in quantum cryptography using low-density parity-check codes},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {77--86},
     year = {2017},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a6/}
}
TY  - JOUR
AU  - D. A. Kronberg
TI  - New methods of error correction in quantum cryptography using low-density parity-check codes
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 77
EP  - 86
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a6/
LA  - en
ID  - MVK_2017_8_2_a6
ER  - 
%0 Journal Article
%A D. A. Kronberg
%T New methods of error correction in quantum cryptography using low-density parity-check codes
%J Matematičeskie voprosy kriptografii
%D 2017
%P 77-86
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a6/
%G en
%F MVK_2017_8_2_a6
D. A. Kronberg. New methods of error correction in quantum cryptography using low-density parity-check codes. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 77-86. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a6/

[1] Gallager R., “Low-density parity-check codes”, IRE Trans. Inf. Theory, IT-8 (1962), 21–28 | DOI | MR | Zbl

[2] MacWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977, xx+762 pp. | MR | Zbl

[3] MacKay D. J. C., Information Theory, Inference and Learning Algorithms, Cambridge Univ. Press, Cambridge, 2003, xii+628 pp. | MR | Zbl

[4] Johnson S. J., Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes, Cambridge Univ. Press, Cambridge, 2009, 356 pp. | MR

[5] J. Exper. Theor. Physics, 106:1 (2008), 1–16 | DOI | MR

[6] J. Exper. Theor. Physics, 109:4 (2009), 557–584 | DOI

[7] Elliott C., Colvin A., Pearson D., Pikalo O., Schlafer J., Yeh H., “Current status of the DARPA quantum network”, Defense and Security, Int. Society for Optics and Photonics, 2005, 138–149

[8] Elkouss D., Leverrier A., Alleaume R., Boutros J. J., “Efficient reconciliation protocol for discrete-variable quantum key distribution”, IEEE Int. Symp. Inf. Theory (2009), 1879–1883

[9] Dixon A. R., Sato H., “High speed and adaptable error correction for megabit/s rate quantum key distribution”, Scientific reports, 4 (2014), 7275 https://www.nature.com/articles/srep07275 | DOI

[10] Brassard G., Salvail L., “Secret-key reconciliation by public discussion”, EUROCRYPT'93, Lect. Notes Comput. Sci., 765, 1993, 410–423 | DOI

[11] Pedersen T. B., Toyran M., “High performance information reconciliation for QKD with CASCADE”, Quant. Inf. and Comput., 15:5–6 (2015), 419–434 | MR

[12] Martinez-Mateo J., Pacher C., Peev M., Ciurana A., Martin V., “Demystifying the information reconciliation protocol cascade”, Quant. Inf. and Comput., 15:5–6 (2015), 453–477