Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 65-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $p$ be a prime number, $R = \mathrm{GR}(q^d, p^d)$, where $q = p^r$, be a Galois ring, $S = \mathrm{GR}(q^{nd}, p^d)$ be its extension. We prove a non-commutative generalization of the well-known Hamilton–Cayley theorem. Using this result we prove the existence of roots in some extension $\mathcal{K}$ of $\check{S}$ for characteristic polynomials of skew maximal period linear recurrent sequences over $S$. Also for these polynomials we investigate the structure of the set of their roots.
@article{MVK_2017_8_2_a5,
     author = {M. A. Goltvanitsa},
     title = {Non-commutative {Hamilton{\textendash}Cayley} theorem and roots of characteristic polynomials of skew maximal period linear recurrences over {Galois} rings},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {65--76},
     year = {2017},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/}
}
TY  - JOUR
AU  - M. A. Goltvanitsa
TI  - Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 65
EP  - 76
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/
LA  - en
ID  - MVK_2017_8_2_a5
ER  - 
%0 Journal Article
%A M. A. Goltvanitsa
%T Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings
%J Matematičeskie voprosy kriptografii
%D 2017
%P 65-76
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/
%G en
%F MVK_2017_8_2_a5
M. A. Goltvanitsa. Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 65-76. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/

[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[2] Nechaev A. A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | DOI | MR | Zbl

[3] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew linear recurring sequences of maximal period over Galois rings”, J. Math. Sci., 187:2 (2012), 115–128 | DOI | MR | Zbl

[4] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl

[5] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew LRS of maximal period over Galois rings”, Mathematical Aspects of Cryptography, 4:2 (2013), 59–72 | MR

[6] Goltvanitsa M. A., “A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors”, Mathematical Aspects of Cryptography, 5:2 (2014), 37–46

[7] Goltvanitsa M. A., “Digit sequences of skew linear recurrences of maximal period over Galois rings”, Mathematical Aspects of Cryptography, 6:2 (2015), 189–197 | MR

[8] Goltvanitsa M. A., “The first digit sequence of skew linear recurrence of maximal period over Galois ring”, Mathematical Aspects of Cryptography, 7:3 (2016), 5–18 | MR

[9] Goltvanitsa M. A., “About one class of skew linear recurrences of maximal period over Galois rings”, Vysoko dostupnye systemy, 11:3 (2015), 28–48 (in Russian) | MR

[10] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. I, Gelios ARV, M., 2003, 336 pp. (in Russian)

[11] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003, 416 pp. (in Russian)