@article{MVK_2017_8_2_a5,
author = {M. A. Goltvanitsa},
title = {Non-commutative {Hamilton{\textendash}Cayley} theorem and roots of characteristic polynomials of skew maximal period linear recurrences over {Galois} rings},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {65--76},
year = {2017},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/}
}
TY - JOUR AU - M. A. Goltvanitsa TI - Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings JO - Matematičeskie voprosy kriptografii PY - 2017 SP - 65 EP - 76 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/ LA - en ID - MVK_2017_8_2_a5 ER -
%0 Journal Article %A M. A. Goltvanitsa %T Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings %J Matematičeskie voprosy kriptografii %D 2017 %P 65-76 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/ %G en %F MVK_2017_8_2_a5
M. A. Goltvanitsa. Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 65-76. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a5/
[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[2] Nechaev A. A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | DOI | MR | Zbl
[3] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew linear recurring sequences of maximal period over Galois rings”, J. Math. Sci., 187:2 (2012), 115–128 | DOI | MR | Zbl
[4] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl
[5] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew LRS of maximal period over Galois rings”, Mathematical Aspects of Cryptography, 4:2 (2013), 59–72 | MR
[6] Goltvanitsa M. A., “A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors”, Mathematical Aspects of Cryptography, 5:2 (2014), 37–46
[7] Goltvanitsa M. A., “Digit sequences of skew linear recurrences of maximal period over Galois rings”, Mathematical Aspects of Cryptography, 6:2 (2015), 189–197 | MR
[8] Goltvanitsa M. A., “The first digit sequence of skew linear recurrence of maximal period over Galois ring”, Mathematical Aspects of Cryptography, 7:3 (2016), 5–18 | MR
[9] Goltvanitsa M. A., “About one class of skew linear recurrences of maximal period over Galois rings”, Vysoko dostupnye systemy, 11:3 (2015), 28–48 (in Russian) | MR
[10] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. I, Gelios ARV, M., 2003, 336 pp. (in Russian)
[11] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003, 416 pp. (in Russian)