Lower bounds for the practical secrecy of a key
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 29-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain lower bounds for the practical secrecy of a key. Practical secrecy is defined as the average amount of keys tested before the encryption key is determined. To find the encryption key we use truncated key search algorithms having some success probabilities. The lower bounds of the practical secrecy are expressed in terms of limiting values of success probabilities and of total variation distance between the key probability distribution and the uniform distribution.
@article{MVK_2017_8_2_a2,
     author = {I. M. Arbekov},
     title = {Lower bounds for the practical secrecy of a key},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {29--38},
     year = {2017},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a2/}
}
TY  - JOUR
AU  - I. M. Arbekov
TI  - Lower bounds for the practical secrecy of a key
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 29
EP  - 38
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a2/
LA  - en
ID  - MVK_2017_8_2_a2
ER  - 
%0 Journal Article
%A I. M. Arbekov
%T Lower bounds for the practical secrecy of a key
%J Matematičeskie voprosy kriptografii
%D 2017
%P 29-38
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a2/
%G en
%F MVK_2017_8_2_a2
I. M. Arbekov. Lower bounds for the practical secrecy of a key. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 29-38. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a2/

[1] Arbekov I. M., “Criteria of key security”, Mathematical Aspects of Cryptography, 7:1 (2016), 41–58 (in Russian) | MR

[2] Portmann C., Renner R., Cryptographic security of quantum key distribution, 11 Sep 2014, arXiv: 1409.3525v1 [quant-ph]