@article{MVK_2017_8_2_a1,
author = {S. V. Agievich and V. V. Marchuk and A. S. Maslau and V. I. Semenov},
title = {Bash-f: another {LRX} sponge function},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {7--28},
year = {2017},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a1/}
}
S. V. Agievich; V. V. Marchuk; A. S. Maslau; V. I. Semenov. Bash-f: another LRX sponge function. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 7-28. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a1/
[1] Bee2: A cryptographic library, https://github.org/agievich/bee2
[2] Bertoni G., Daemen J., Peeters M., Van Assche G., Cryptographic sponge functions. Version 0.1, , 2011 http://sponge.noekeon.org/CSF-0.1.pdf
[3] Bertoni G., Daemen J., Peeters M., Van Assche G., “Sponge functions”, Ecrypt Hash Workshop, 2007
[4] Brouwer A. E., Hobart S. A., Parameters of directed strongly regular graphs, http://homepages.cwi.nl/\allowbreakãeb/math/dsrg/dsrg.html
[5] Cryptography standards of Belarus, (in Russian) http://apmi.bsu.by/resources/std
[6] Harrison M. A., “On the classification of Boolean functions by the general linear and affine group”, J. SIAM, 12 (1964), 284–299 | MR
[7] Jorgensen L. K., “Directed strongly regular graphs with $\mu=\lambda$”, Discrete Math., 231 (2001), 289–293 | DOI | MR | Zbl
[8] Lidl R., Niederreiter H., Finite Fields, Cambridge Univ. Press, Cambridge, 1997, 755 pp. | MR
[9] Lorens C. S., “Invertible Boolean functions”, IEEE Transactions on Electronic Computers, 13:5 (1964), 529–541 | DOI | MR | Zbl