Bash-f: another LRX sponge function
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 7-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the Bash family of hashing algorithms based on the sponge paradigm. A core element of this family is the Bash-f sponge function which refers to the LRX (Logical-Rotation-Xor) class of symmetric cryptographic schemes. We describe the components of Bash-f: a nonlinear mapping, linear diffusion mappings, a permutation of words of a hash state. For each component we establish reasonable quality criteria aiming to make the choice of components maximally objective and transparent.
@article{MVK_2017_8_2_a1,
     author = {S. V. Agievich and V. V. Marchuk and A. S. Maslau and V. I. Semenov},
     title = {Bash-f: another {LRX} sponge function},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {7--28},
     year = {2017},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a1/}
}
TY  - JOUR
AU  - S. V. Agievich
AU  - V. V. Marchuk
AU  - A. S. Maslau
AU  - V. I. Semenov
TI  - Bash-f: another LRX sponge function
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 7
EP  - 28
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a1/
LA  - en
ID  - MVK_2017_8_2_a1
ER  - 
%0 Journal Article
%A S. V. Agievich
%A V. V. Marchuk
%A A. S. Maslau
%A V. I. Semenov
%T Bash-f: another LRX sponge function
%J Matematičeskie voprosy kriptografii
%D 2017
%P 7-28
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a1/
%G en
%F MVK_2017_8_2_a1
S. V. Agievich; V. V. Marchuk; A. S. Maslau; V. I. Semenov. Bash-f: another LRX sponge function. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 2, pp. 7-28. http://geodesic.mathdoc.fr/item/MVK_2017_8_2_a1/

[1] Bee2: A cryptographic library, https://github.org/agievich/bee2

[2] Bertoni G., Daemen J., Peeters M., Van Assche G., Cryptographic sponge functions. Version 0.1, , 2011 http://sponge.noekeon.org/CSF-0.1.pdf

[3] Bertoni G., Daemen J., Peeters M., Van Assche G., “Sponge functions”, Ecrypt Hash Workshop, 2007

[4] Brouwer A. E., Hobart S. A., Parameters of directed strongly regular graphs, http://homepages.cwi.nl/\allowbreakãeb/math/dsrg/dsrg.html

[5] Cryptography standards of Belarus, (in Russian) http://apmi.bsu.by/resources/std

[6] Harrison M. A., “On the classification of Boolean functions by the general linear and affine group”, J. SIAM, 12 (1964), 284–299 | MR

[7] Jorgensen L. K., “Directed strongly regular graphs with $\mu=\lambda$”, Discrete Math., 231 (2001), 289–293 | DOI | MR | Zbl

[8] Lidl R., Niederreiter H., Finite Fields, Cambridge Univ. Press, Cambridge, 1997, 755 pp. | MR

[9] Lorens C. S., “Invertible Boolean functions”, IEEE Transactions on Electronic Computers, 13:5 (1964), 529–541 | DOI | MR | Zbl