Partitions on bigrams and Markov property of block ciphers
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 107-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of iterated block ciphers with alphabet $X$, independent uniform round keys and a key addition group $(X,\otimes)$ is considered. We find conditions ensuring the preservation of Markov property under lumping of Markov chain with state space $X^2$ corresponding to bigrams of intermediate ciphertexts. We describe properties of Markov ciphers considered and lumping transforms.
@article{MVK_2017_8_1_a8,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Partitions on bigrams and {Markov} property of block ciphers},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {107--142},
     year = {2017},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a8/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Partitions on bigrams and Markov property of block ciphers
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 107
EP  - 142
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a8/
LA  - ru
ID  - MVK_2017_8_1_a8
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Partitions on bigrams and Markov property of block ciphers
%J Matematičeskie voprosy kriptografii
%D 2017
%P 107-142
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a8/
%G ru
%F MVK_2017_8_1_a8
B. A. Pogorelov; M. A. Pudovkina. Partitions on bigrams and Markov property of block ciphers. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 107-142. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a8/

[1] Minier M., Gilbert H., “Stochastic cryptanalysis of Crypton”, FSE 2000, Lect. Notes Comput. Sci., 1978, 2000, 121–133 | DOI | MR

[2] Lai X., Massey J. L., Murphy S., “Markov ciphers and differential cryptanalysis”, EuroCrypt 1991, Lect. Notes Comput. Sci., 547, 1991, 17–38 | DOI | MR | Zbl

[3] Kemeni D., Snell D., Konechnye tsepi Markova, Nauka, M., 1970, 272 pp.

[4] Sachkov V. N., “Veroyatnostnye preobrazovateli i pravilnye multigrafy. I”, Trudy po diskretnoi matematike, 1 (1997), 227–250 | Zbl

[5] Sachkov V. N., “Tsepi Markova iteratsionnykh sistem preobrazovanii”, Trudy po diskretnoi matematike, 6 (2002), 165–183

[6] Sachkov V. N., “Veroyatnostnye preobrazovateli i summy elementarnykh matrits. II”, Trudy po diskretnoi matematike, 8 (2005), 240–252 | Zbl

[7] Maksimov Yu. I., “Nekotorye rezultaty dlya zadachi ukrupneniya sostoyanii tsepei Markova”, Trudy po diskretnoi matematike, 8 (2005), 148–154

[8] Vaudenay S., “On the Lai–Massey scheme”, ASIACRYPT'99, Lect. Notes Comput. Sci., 1716, 1999, 8–19 | DOI | MR | Zbl

[9] Knudsen L. R., “Truncated and higher order differentials”, FSE'95, Lect. Notes Comput. Sci., 1008, 1995, 196–211 | DOI | Zbl

[10] Matsui M., Tokita T., “Cryptanalysis of a reduced version of the block cipher E2”, FSE'99, Lect. Notes Comput. Sci., 2001, 71–80

[11] Moriai S., Sugita M., Aoki K., Kanda M., “Security of E2 against truncated differential cryptanalysis”, SAC'99, Lect. Notes Comput. Sci., 1758, 2000, 106–117 | DOI | Zbl

[12] Reichardt B., Wagner D., “Markov truncated differential cryptanalysis of Skipjack”, SAC 2002, Lect. Notes Comput. Sci., 2595, 2002, 110–128 | DOI | MR

[13] Blondeau C., “Improbable differential from impossible differential: on the validity of the model”, INDOCRYPT 2013, Lect. Notes Comput. Sci., 8250, 2013, 149–160 | DOI | Zbl

[14] Massey J. L., “SAFER K-64: One year later”, FSE'94, Lect. Notes Comput. Sci., 1008, 1994, 212–232 | DOI

[15] Lai X., On the design and security of block ciphers, PhD, Swiss Federal Inst. Technology, Zurich, 1992

[16] Agievich S. V., Afonenko A. A., “Eksponentsialnye S-bloki”, Matematika i bezopasnost informatsionnykh tekhnologii, MABIT 2003, MTsNMO, M., 2003, 127–130

[17] Shemyakina O. V., “Ob otsenke kharakteristik razbienii razlichnykh algebraicheskikh struktur”, Inform. bezopasnost regionov Rossii, IBRR-2011, Mater. VII SPb. mezhregion. konf., SPOISU, SPb., 2011, 137

[18] Nyberg K., Knudsen L. R., “Provable security against differential cryptanalysis”, Crypto 1992, Lect. Notes Comput. Sci., 740, 1993, 566–574 | DOI | MR | Zbl