@article{MVK_2017_8_1_a6,
author = {V. G. Mikhailov},
title = {The number of decomposition of random permutation into the product},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {80--94},
year = {2017},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a6/}
}
V. G. Mikhailov. The number of decomposition of random permutation into the product. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 80-94. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a6/
[1] Flajolet P., Sedgewick W., Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009, 824 pp. | MR | Zbl
[2] Chovla S., Herstein I. N., Moore W. K., “On recursions connected with symmetric groups. I”, Canad. J. Math., 3 (1951), 328–334 | DOI | MR
[3] Lugo M., The cycle structure of compositions of random involutions, 18 Nov 2009, arXiv: 0911.3604v1 [math.CO]
[4] Lugo M., Profiles of large combinatorial structures, PhD Thesis, Univ. Pensylvania, 2010 | MR
[5] Burnette Ch., Schmutz E., Representing random permutations as the product of two involutions, 21 Jul 2015, arXiv: 1507.05701v1 [math.CO] | MR
[6] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978, 288 pp.
[7] Erdös P., Turán P., “On some problems of a statistical group-theory. III”, Acta. Math. Acad. Sci. Hungar., 18 (1967), 309–320 | DOI | MR | Zbl
[8] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp.
[9] Arratia R., Barbour A. D., Tavaré S., “Limit theorems for combinatorial structures”, Ann. Probab., 28:4 (2000), 1620–1644 | DOI | MR | Zbl
[10] Arratia R., Tavaré S., “Limit theorems for combinatorial structures via discrete process approximations”, Rand. Struct. Algor., 3:3 (1992), 321–345 | DOI | MR | Zbl
[11] DeLaurentis J. M., Pittel B. G., “Random permutations and Brownian motion”, Pacific J. Math., 119:2 (1985), 287–301 | DOI | MR | Zbl
[12] Manstavicius E., “The Berry–Esseen bound in the theory of random permutations”, Ramanujan J., 2:1–2 (1998), 185–199 | DOI | MR | Zbl