The number of decomposition of random permutation into the product
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 80-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the number of decompositions of random permutation of the $n$-th order into the product of two involutions with given cycle in one of multipliers. Theorems on the asymptotical logarithmic normality of this number as $n\to\infty$ are proved.
@article{MVK_2017_8_1_a6,
     author = {V. G. Mikhailov},
     title = {The number of decomposition of random permutation into the product},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {80--94},
     year = {2017},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a6/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - The number of decomposition of random permutation into the product
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 80
EP  - 94
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a6/
LA  - ru
ID  - MVK_2017_8_1_a6
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T The number of decomposition of random permutation into the product
%J Matematičeskie voprosy kriptografii
%D 2017
%P 80-94
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a6/
%G ru
%F MVK_2017_8_1_a6
V. G. Mikhailov. The number of decomposition of random permutation into the product. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 80-94. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a6/

[1] Flajolet P., Sedgewick W., Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009, 824 pp. | MR | Zbl

[2] Chovla S., Herstein I. N., Moore W. K., “On recursions connected with symmetric groups. I”, Canad. J. Math., 3 (1951), 328–334 | DOI | MR

[3] Lugo M., The cycle structure of compositions of random involutions, 18 Nov 2009, arXiv: 0911.3604v1 [math.CO]

[4] Lugo M., Profiles of large combinatorial structures, PhD Thesis, Univ. Pensylvania, 2010 | MR

[5] Burnette Ch., Schmutz E., Representing random permutations as the product of two involutions, 21 Jul 2015, arXiv: 1507.05701v1 [math.CO] | MR

[6] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978, 288 pp.

[7] Erdös P., Turán P., “On some problems of a statistical group-theory. III”, Acta. Math. Acad. Sci. Hungar., 18 (1967), 309–320 | DOI | MR | Zbl

[8] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp.

[9] Arratia R., Barbour A. D., Tavaré S., “Limit theorems for combinatorial structures”, Ann. Probab., 28:4 (2000), 1620–1644 | DOI | MR | Zbl

[10] Arratia R., Tavaré S., “Limit theorems for combinatorial structures via discrete process approximations”, Rand. Struct. Algor., 3:3 (1992), 321–345 | DOI | MR | Zbl

[11] DeLaurentis J. M., Pittel B. G., “Random permutations and Brownian motion”, Pacific J. Math., 119:2 (1985), 287–301 | DOI | MR | Zbl

[12] Manstavicius E., “The Berry–Esseen bound in the theory of random permutations”, Ramanujan J., 2:1–2 (1998), 185–199 | DOI | MR | Zbl