Analyzing the influence of linear redundancy in S-boxes on the affine equivalence within XSL-like round functions
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 51-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that S-boxes based on finite field inversion always possess complete linear redundancy. Next, we consider the influence of linear redundancy of S-boxes on the affine equivalence of component functions within XSL-like round functions in the general case. Then, we propose an effective practical approach to test this. Finally, some experimental results on the round functions within the Kuznyechik and AES are presented.
@article{MVK_2017_8_1_a4,
     author = {Nguyen Bui Cuong and Nguyen Van Long and Hoang Dinh Linh},
     title = {Analyzing the influence of linear redundancy in {S-boxes} on the affine equivalence within {XSL-like} round functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {51--68},
     year = {2017},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a4/}
}
TY  - JOUR
AU  - Nguyen Bui Cuong
AU  - Nguyen Van Long
AU  - Hoang Dinh Linh
TI  - Analyzing the influence of linear redundancy in S-boxes on the affine equivalence within XSL-like round functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 51
EP  - 68
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a4/
LA  - en
ID  - MVK_2017_8_1_a4
ER  - 
%0 Journal Article
%A Nguyen Bui Cuong
%A Nguyen Van Long
%A Hoang Dinh Linh
%T Analyzing the influence of linear redundancy in S-boxes on the affine equivalence within XSL-like round functions
%J Matematičeskie voprosy kriptografii
%D 2017
%P 51-68
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a4/
%G en
%F MVK_2017_8_1_a4
Nguyen Bui Cuong; Nguyen Van Long; Hoang Dinh Linh. Analyzing the influence of linear redundancy in S-boxes on the affine equivalence within XSL-like round functions. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a4/

[1] Fuller J., Millan W., “Linear redundancy in S-boxes”, Fast Software Encryption, Lect. Notes Comput. Sci., 6061, 2010, 73–80 | DOI

[2] Daemen J., Rijmen V., The Design of Rijndael: AES — The Advanced Encryption Standard, Springer, Heidelberg etc., 2002, xvii+238 pp. | MR | Zbl

[3] Aoki K., Ichikawa T., Kanda M., Matsui M., Moriai S., Nakajima J., Tokita T., “Camellia: A 128-bit block cipher suitable for multiple platforms-design and analysis”, Selected Areas in Cryptography, Lect. Notes Comput. Sci., 2012, 2001, 39–56 | DOI | MR | Zbl

[4] Rijmen V., Daemen J., Preneel B., Bosselaers A., De Win E., “The cipher SHARK”, Fast Software Encryption, Lect. Notes Comput. Sci., 1039, 1996, 99–111 | DOI

[5] Ivanov G., Nikolov N., Nikova S., Reversed genetic algorithms for generation of bijective S-boxes with good cryptographic properties, Cryptology ePrint Archive, Report 2014/801, , 2014 http://eprint/iacr.org/2014/801.pdf

[6] Youssef A. M., Tavares S. E., “Affine equivalence in the AES round function”, Discrete Appl. Math., 148:2 (2005), 161–170 | DOI | MR | Zbl

[7] Lidl R., Niederreiter H., Finite Fields, 2nd ed., Cambridge Univ. Press, Cambridge, 1997, xiv+755 pp. | MR

[8] Dygin D. M., Lavrikov I. V., Marshalko G. B., Rudskoy V. I., Trifonov D. I., Shishkin V. A., “On a new Russian Encryption Standard”, Mathematical Aspects of Cryptography, 6:2 (2015), 29–34 | MR

[9] Information technology. Cryptographic Data Security. Block ciphers, GOST R 34.12-2015. Federal Agency on Technical Regulating and Metrology, Standardinform, M., 2015 (In Russian)