Convergence of transition matrices of some Markov chains on finite Abelian group to the uniform matrix
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 31-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of finite homogeneous Markov chains connected with the autoregression scheme on finite Abelian groups is studied. In terms of the autoregression scheme parameters some conditions of complete regularity are given and exact formulas for the mean square deviation of $N$-step transition matrices from the limiting uniform matrix are derived.
@article{MVK_2017_8_1_a3,
     author = {I. A. Kruglov},
     title = {Convergence of transition matrices of some {Markov} chains on finite {Abelian} group to the uniform matrix},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {31--50},
     year = {2017},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - Convergence of transition matrices of some Markov chains on finite Abelian group to the uniform matrix
JO  - Matematičeskie voprosy kriptografii
PY  - 2017
SP  - 31
EP  - 50
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/
LA  - ru
ID  - MVK_2017_8_1_a3
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T Convergence of transition matrices of some Markov chains on finite Abelian group to the uniform matrix
%J Matematičeskie voprosy kriptografii
%D 2017
%P 31-50
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/
%G ru
%F MVK_2017_8_1_a3
I. A. Kruglov. Convergence of transition matrices of some Markov chains on finite Abelian group to the uniform matrix. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 31-50. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/

[1] Glukhov M. M., “O chislovykh parametrakh, svyazannykh s zadaniem konechnykh grupp sistemami obrazuyuschikh elementov”, Trudy po diskretnoi matematike, 1, Nauchnoe izd-vo TVP, M., 1997, 43–66

[2] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, Nauchnoe izd-vo TVP, M., 1997, 85–112

[3] Kruglov I. A., “Usloviya predelnoi ravnoveroyatnosti raspredelenii v skheme lineinoi avtoregressii so sluchainym upravleniem na konechnoi gruppe”, Diskretn. matem., 17:3 (2005), 12–18 | DOI | Zbl

[4] Kruglov I. A., “O sloyakh v sisteme obrazuyuschikh elementov podpryamogo proizvedeniya podgrupp konechnoi gruppy”, Diskretn. matem., 21:1 (2009), 52–65 | DOI | Zbl

[5] Kruglov I. A., “Sluchainye posledovatelnosti vida $X_{t+1}=a_t\cdot X_t+b_t \pmod n$ s zavisimymi koeffitsientami $a_t$, $b_t$”, Diskretn. matem., 17:2 (2005), 49–55 | DOI | MR | Zbl

[6] Diaconis P., Group Representations in Probability and Statistics, Lecture Notes — Monograph Series, 11, Inst. of Math. Statist., Hayward, CA, 1988, 198 pp. | MR | Zbl

[7] Hildebrand M., “Random processes of the form $X_{n+1}=a_n\cdot X_n+b_n \pmod p$”, Ann. Probab., 21:2 (1993), 710–720 | DOI | MR | Zbl

[8] Hildebrand M., “Random processes of the form $X_{n+1}=a_n\cdot X_n+b_n \pmod p$, where $b_n$ takes on a single value”, Random Discrete Structures, IMA Vol. Math. Appl., 76, Springer, Heidelberg etc., 1996, 153–174 | DOI | MR | Zbl

[9] Asci C., “Generating uniform random vectors”, J. Theoret. Probab., 14:2 (2001), 333–356 | DOI | MR | Zbl

[10] Helleloid G., Automorphism Groups of Finite $p$-groups: Structure and Applications, Ph.D., The Univ. of Texas at Austin, 2007, 107 pp., arXiv: 0711.2816 [math.GR] | MR

[11] Bianko S., Random processes of the form $X_{n+1}=A_n\cdot X_n+B_n \pmod p$ in two dimensions, Ph.D., State Univ. of New York at Albany, 2012, 37 pp. | MR

[12] Hildebrand M., “A lower bound for the Chung–Diaconis–Graham random process”, Proc. Amer. Math. Soc., 137:4 (2009), 1479–1487 | DOI | MR | Zbl

[13] Hildebrand M., McCollum J., “Generating random vectors in $(Z/pZ)^d$ via an affine random process”, J. Theor. Probab., 21:4 (2008), 802–811 | DOI | MR | Zbl