@article{MVK_2017_8_1_a3,
author = {I. A. Kruglov},
title = {Convergence of transition matrices of some {Markov} chains on finite {Abelian} group to the uniform matrix},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {31--50},
year = {2017},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/}
}
TY - JOUR AU - I. A. Kruglov TI - Convergence of transition matrices of some Markov chains on finite Abelian group to the uniform matrix JO - Matematičeskie voprosy kriptografii PY - 2017 SP - 31 EP - 50 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/ LA - ru ID - MVK_2017_8_1_a3 ER -
I. A. Kruglov. Convergence of transition matrices of some Markov chains on finite Abelian group to the uniform matrix. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 31-50. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a3/
[1] Glukhov M. M., “O chislovykh parametrakh, svyazannykh s zadaniem konechnykh grupp sistemami obrazuyuschikh elementov”, Trudy po diskretnoi matematike, 1, Nauchnoe izd-vo TVP, M., 1997, 43–66
[2] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, Nauchnoe izd-vo TVP, M., 1997, 85–112
[3] Kruglov I. A., “Usloviya predelnoi ravnoveroyatnosti raspredelenii v skheme lineinoi avtoregressii so sluchainym upravleniem na konechnoi gruppe”, Diskretn. matem., 17:3 (2005), 12–18 | DOI | Zbl
[4] Kruglov I. A., “O sloyakh v sisteme obrazuyuschikh elementov podpryamogo proizvedeniya podgrupp konechnoi gruppy”, Diskretn. matem., 21:1 (2009), 52–65 | DOI | Zbl
[5] Kruglov I. A., “Sluchainye posledovatelnosti vida $X_{t+1}=a_t\cdot X_t+b_t \pmod n$ s zavisimymi koeffitsientami $a_t$, $b_t$”, Diskretn. matem., 17:2 (2005), 49–55 | DOI | MR | Zbl
[6] Diaconis P., Group Representations in Probability and Statistics, Lecture Notes — Monograph Series, 11, Inst. of Math. Statist., Hayward, CA, 1988, 198 pp. | MR | Zbl
[7] Hildebrand M., “Random processes of the form $X_{n+1}=a_n\cdot X_n+b_n \pmod p$”, Ann. Probab., 21:2 (1993), 710–720 | DOI | MR | Zbl
[8] Hildebrand M., “Random processes of the form $X_{n+1}=a_n\cdot X_n+b_n \pmod p$, where $b_n$ takes on a single value”, Random Discrete Structures, IMA Vol. Math. Appl., 76, Springer, Heidelberg etc., 1996, 153–174 | DOI | MR | Zbl
[9] Asci C., “Generating uniform random vectors”, J. Theoret. Probab., 14:2 (2001), 333–356 | DOI | MR | Zbl
[10] Helleloid G., Automorphism Groups of Finite $p$-groups: Structure and Applications, Ph.D., The Univ. of Texas at Austin, 2007, 107 pp., arXiv: 0711.2816 [math.GR] | MR
[11] Bianko S., Random processes of the form $X_{n+1}=A_n\cdot X_n+B_n \pmod p$ in two dimensions, Ph.D., State Univ. of New York at Albany, 2012, 37 pp. | MR
[12] Hildebrand M., “A lower bound for the Chung–Diaconis–Graham random process”, Proc. Amer. Math. Soc., 137:4 (2009), 1479–1487 | DOI | MR | Zbl
[13] Hildebrand M., McCollum J., “Generating random vectors in $(Z/pZ)^d$ via an affine random process”, J. Theor. Probab., 21:4 (2008), 802–811 | DOI | MR | Zbl