@article{MVK_2017_8_1_a2,
author = {Yu. V. Kosolapov},
title = {Blakley type secret sharing scheme based on the intersection of subspaces},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {13--30},
year = {2017},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a2/}
}
Yu. V. Kosolapov. Blakley type secret sharing scheme based on the intersection of subspaces. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a2/
[1] Cramer R., Damgard I., Maurer U., “General secure multi-party computation from any linear secret-sharing scheme”, EUROCRYPT 2000, Lect. Notes Comput. Sci., 1807, 2000, 316–334 | DOI | MR | Zbl
[2] Chen H., Cramer R., Goldwasser S., Haan R., Vaikuntanathan V., “Secure computation from random error correcting codes”, EUROCRYPT 2007, Lect. Notes Comput. Sci., 4515, 2007, 291–310 | DOI | MR | Zbl
[3] Pogorelov B. A., Sachkov V. N., Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 91 pp.
[4] Shamir A., “How to share a secret”, Comm. ACM, 22:11 (1979), 612–613 | DOI | MR | Zbl
[5] Blakley G. R., “Safeguarding cryptographic keys”, AFIPS Conf. Proc., 48, 1979, 313–317
[6] Brickell E. F., “Some ideal secret sharing schemes”, EUROCRYPT'89, Lect. Notes Comput. Sci., 434, 1989, 468–475 | DOI | MR
[7] Blakley G. R., Kabatianski G. A., “Linear algebra approach to secret sharing schemes”, Error Control, Cryptology, and Speech Compression, Lect. Notes Comput. Sci., 829, 1994, 33–40 | DOI | MR
[8] Dijk M., “A linear construction of perfect secret sharing schemes”, EUROCRYPT'94, Lect. Notes Comput. Sci., 950, 1994, 23–34 | DOI | MR
[9] Ozarov L. H., Wyner A. D., “Wire-tap channel II”, Bell Labs Techn. J., 63:10 (1984), 2135–2157 | DOI
[10] Deundyak V. M., Kosolapov Yu. V., “Ob odnom metode snyatiya neopredelennosti v kanale s pomekhami v sluchae primeneniya kodovogo zashumleniya”, Izv. YuFU. Tekhn. nauki, 2014, 197–208
[11] Sendrier N., “Finding the permutation between equivalent linear codes: the support splitting algorithm”, IEEE Trans. Inf. Theory, 46:4 (2000), 1193–1203 | DOI | MR | Zbl
[12] Forney G. D., “Dimension/length profiles and Trellis complexity of linear block codes”, IEEE Trans. Inf. Theory, 40:6 (1994), 1741–1752 | DOI | MR | Zbl
[13] Deundyak V. M., Maevskii A. E., Mogilevskaya N. S., Metody pomekhoustoichivoi zaschity dannykh, YuFU, Rostov-n/D, 2014, 308 pp.
[14] Wei V. K., “Generalized Hamming weights for linear codes”, IEEE Trans. Inf. Theory, 37:5 (1991), 1412–1418 | DOI | MR | Zbl
[15] Dodunekov S. M., Landgev I. N., “On near-MDS codes”, Proc. IEEE Int. Symp. Inf. Theory, 1994, 427
[16] Chabot C., “Recognition of a code in a noisy environment”, Proc. IEEE Int. Symp. Inf. Theory, 2007, 2211–2215
[17] Ding P., Key J. D., “Minimum-weight codewords as generators of generalized Reed–Muller codes”, IEEE Trans. Inf. Theory, 46:6 (2000), 2152–2157 | DOI | MR
[18] Blake I. F., Mullin R. C., The Mathematical Theory of Coding, Academic Press, N.Y., 1975, 368 pp. | MR | Zbl
[19] Kosolapov Yu. V., “Verkhnyaya granitsa ierarkhii vesov regulyarnykh slaboplotnykh kodov spetsialnogo vida”, Mezhvuz. sb. nauch. tr., Integro-diff. operatory i ikh pril., 8, 2008, 72–80
[20] Barg S., “Nekotorye novye NP-polnye zadachi kodirovaniya”, Problemy peredachi informatsii, 30:3 (1994), 23–28
[21] Bouyukliev I., Bakoev V., “A method for efficiently computing the number of codewords of fixed weights in linear codes”, Discr. Appl. Math., 156:15 (2008), 2986–3004 | DOI | MR | Zbl
[22] Zubkov A. M., Kruglov V. I., “Statisticheskie kharakteristiki vesovykh spektrov sluchainykh lineinykh kodov na $\mathrm{GF}(p)$”, Matematicheskie voprosy kriptografii, 5:1 (2014), 27–38 | Zbl